• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Medizin
  • Molekulare Medizin
  • Item View
  •   Home
  • Medizin
  • Molekulare Medizin
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Migratory Cues For Encephalitogenic Effector T Cells Within The CNS During The Different Phases Of EAE

by Christian Schläger
Doctoral thesis
Date of Examination:2013-04-30
Date of issue:2013-06-17
Advisor:Prof. Dr. Alexander Flügel
Referee:Prof. Dr. Holger Reichardt
Referee:Prof. Dr. Mikael Simons
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-3891

 

 

Files in this item

Name:Schläger Dissertation.pdf
Size:3.72Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

In multiple sclerosis (MS), encephalitogenic T cells are considered to breach distinct cerebral barriers in order to gain access to their target tissue, the CNS. However, it remains poorly understood exactly how auto-reactive T cells overcome these boundaries and which migratory cues guide them on their journey. In the present work, intravital two-photon laser scanning microscopy (TPLSM) was employed to examine in detail the migratory behavior of adoptively transferred GFP+ CD4+ MBP-reactive T cells under the influence of chemokine signaling during different disease phases of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. During preclinical EAE, encephalitogenic effector T cells were crawling along the intraluminal surface of leptomeningeal blood vessels preferentially against the direction of the blood stream. Intravenous administration of pertussis toxin (PTx) or a neutralizing anti-CXCR3mAb revealed that chemokines play an essential role for this intravascular crawling behavior. (1) Intraluminal crawling was almost completely abolished; (2) the remaining fraction of cells profoundly changed their motility characteristics, i.e. they crawled for a shorter time with increased velocity and reversed their orientation to go with instead of against the flow. Once myelin-reactive T cells had transgressed the vascular barriers they continued their migration throughout the meningeal surface. Interference with chemokine signaling at this stage had only a moderate impact on the basal T cell motility. However, chemokines were important for stabilizing the contacts between T cells and resident phagocytes and furthermore prevented the detachment of T cells from the meningeal surface into the cerebrospinal fluid (CSF). In sum, the data indicate that encephalitogenic T cells invade the CNS through a well-coordinated sequence of distinct steps, in which chemokines play a major role. Chemokines regulate effector T cell infiltration by controlling adhesion-dependent migratory steps and intercellular interactions during CNS inflammation.
Keywords: EAE; MS; Chemokines; T cells; TPLSM; intravascular crawling
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information | Accessibility
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]