• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Physik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Physik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Testbeam Measurements with Pixel Sensors for the ATLAS Insertable b-Layer Project

by Matthias George
Doctoral thesis
Date of Examination:2014-05-07
Date of issue:2014-07-04
Advisor:PD Dr. Jörn Große-Knetter
Referee:PD Dr. Jörn Große-Knetter
Referee:Prof. Dr. Arnulf Quadt
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-4582

 

 

Files in this item

Name:Dissertation-MGeorge.pdf
Size:51.2Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

During the current long machine shutdown of the Large Hadron Collider (LHC) at CERN (Geneva), the innermost part of the ATLAS experiment, the pixel detector, is upgraded. The existing ATLAS pixel system is equipped with silicon sensors, organized in three barrel layers and three end cap disks on either side. To cope with the higher instantaneous luminosity in the future and for compensation of radiation damages due to past and near future running time of the experiment, a new fourth pixel detector layer is inserted into the existing system. This additional pixel layer is called “Insertable b-Layer” (IBL). The IBL is a detector system, based on silicon pixel sensors. Due to the smaller radius, compared to all other detectors of the ATLAS experiment, it has to be more radiation tolerant, than e.g. the current pixel layers. Furthermore, a reduced pixel size is necessary to cope with the expected higher particle flux. During the planning phase for the IBL upgrade, three different sensor technologies were competing, namely 3D silicon sensors, planar silicon sensors and diamond sensors. For each of the two kinds of silicon sensor approaches, different design alternatives were taken into account as IBL candidates. To find the best sensor for the IBL upgrade, a series of testbeam measurements were performed at DESY (Hamburg) and CERN. This thesis describes the used testbeam setup, the testbeam analysis tools and the results of the IBL testbeam that finally led to the sensor technology choice for the Insertable b-Layer.
Keywords: ATLAS; CERN; testbeam; Insertable b-Layer; silicon sensors; tbmon
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]