• Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
Dokumentanzeige 
  •   Startseite
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Dokumentanzeige
  •   Startseite
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of A Novel Triclustering Method in Analyzing Three Dimensional Transcriptomics Data

von Anirban Bhar
Dissertation
Datum der mündl. Prüfung:2015-03-24
Erschienen:2015-06-19
Betreuer:Prof. Dr. Edgar Wingender
Gutachter:Prof. Dr. Edgar Wingender
Gutachter:Prof. Dr. Stephan Waack
Gutachter:Prof. Dr. Burkhard Morgenstern
Gutachter:Prof. Dr. Anita Schöbel
Gutachter:Prof. Dr. Tim Beißbarth
Gutachter:Prof. Dr. Dieter Hogrefe
crossref-logoZum Verlinken/Zitieren: http://dx.doi.org/10.53846/goediss-5150

 

 

Dateien

Name:Anirban_PhD_thesis_final_1.pdf
Size:14.3Mb
Format:PDF
ViewOpen

Lizenzbestimmungen:


Zusammenfassung

Englisch

Due to the advancement of microarray technology over the last decade, it is feasible to monitor the gene expression dynamics not only over a set of replicates but also either a set of time points or doses of chemical substances. In such three dimensional datasets, variations in the expression profiles can not only be observed across the time points or doses of the chemical substances but also across the replicates due to either abnormalities in the experimental protocol or the physiological variations. Thus, it is important to mine such three dimensional datasets in order to extract biologically meaningful information. In this work, I have proposed a novel triclustering algorithm δ-TRIMAX by introducing a mean squared residue (MSR) score as a coherence measure of the resultant triclusters. The application of this algorithm has been shown in the context of breast cancer progression in order to reveal potential biological processes driving breast cancer invasion. Moreover, I have proposed an improved version of δ-TRIMAX, the EMOA-δ-TRIMAX algorithm which effectively deals with the pitfalls of the former one. One artificial dataset and three real-life datasets have been used to compare the performance of the proposed algorithms with that of other existing algorithms. Besides, the improved version has been applied to one dataset monitoring expression profiles of genes during breast cancer progression for unveiling regulatory mechanisms. Furthermore, the application of the EMOA-δ-TRIMAX algorithm has been demonstrated in investigating the potential biological processes and transcriptional regulatory mechanisms involved in the adolescence of cardiomyocytes. Additionally, I have applied EMOA-δ-TRIMAX algorithm to four real-life datasets in order to provide hints on the pathways perturbed by different toxicants in different tissues. Overall, I could demonstrate that the results of the proposed algorithms for each of the real-life datasets and the artificial ones are promising and provide new insights into the context of breast cancer progression, cardiomyocytes generation and explaining inhalation toxicity.
Keywords: Bioinformatics; Co-expression; Co-regulation; Developmental Biology; Gene Regulatory Network
 

Statistik

Hier veröffentlichen

Blättern

Im gesamten BestandFakultäten & ProgrammeErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTypIn dieser FakultätErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTyp

Hilfe & Info

Publizieren auf eDissPDF erstellenVertragsbedingungenHäufige Fragen

Kontakt | Impressum | Cookie-Einwilligung | Datenschutzerklärung
eDiss - SUB Göttingen (Zentralbibliothek)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
ediss_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]
Niedersächsische Staats- und Universitätsbibliothek | Georg-August Universität
Bereichsbibliothek Medizin (Nur für Promovierende der Medizinischen Fakultät)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
bbmed_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]