Zur Kurzanzeige

DNA-based molecular force sensors in cytoskeletal networks and cells

dc.contributor.advisorRehfeldt, Florian Dr.
dc.contributor.authorPrabhune, Meenakshi
dc.date.accessioned2015-07-30T08:14:40Z
dc.date.available2015-07-30T08:14:40Z
dc.date.issued2015-07-30
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0022-606C-4
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-5206
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530de
dc.titleDNA-based molecular force sensors in cytoskeletal networks and cellsde
dc.typedoctoralThesisde
dc.contributor.refereeSchmidt, Christoph F. Prof. Dr.
dc.date.examination2015-07-10
dc.subject.gokPhysik (PPN621336750)de
dc.description.abstractengEukaryotic cells are highly active and undergo force generating processes such as cell adhesion, migration and division. The cytoskeleton, a polymer meshwork in cells, plays an important role in these cellular processes. Advances in the field of biomechanics have now made it possible to measure the cellular forces in the pN range. We have designed a DNA force sensor, based on FRET, as a tool to investigate multiple cellular processes. The following work encompasses design of the DNA force sensor and validation of its working through control experiments. The sensor was tested in vitro in cytoskeletal networks; mechanics of which were characterized using macrorheology. Preliminary in vivo experiments wherein the DNA force sensor was introduced inside cells are also described.de
dc.contributor.coRefereeKöster, Sarah Prof. Dr.
dc.subject.engDNAde
dc.subject.engforce sensorde
dc.subject.engFRETde
dc.subject.engrheologyde
dc.subject.engnetworksde
dc.subject.engmechanicsde
dc.identifier.urnurn:nbn:de:gbv:7-11858/00-1735-0000-0022-606C-4-3
dc.affiliation.instituteFakultät für Physikde
dc.identifier.ppn832529575


Dateien

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige