Navigation ▼

Show simple item record

dc.contributor.advisor Gizon, Laurent Prof. Dr.
dc.contributor.author Langfellner, Jan
dc.date.accessioned 2015-09-28T08:13:27Z
dc.date.available 2015-09-28T08:13:27Z
dc.date.issued 2015-09-28
dc.identifier.uri http://hdl.handle.net/11858/00-1735-0000-0023-962E-E
dc.description.abstract Diese Dissertation befasst sich mit Beobachtungen von konvektiven Strömungen in der Sonne, und insbesondere mit den Auswirkungen der Rotation auf diese Strömungen auf der Längenskala von Supergranulation und größeren Skalen (>30 Mm). Die Rotation der Sonne verursacht durch die Corioliskraft Wirbelströmungen und bewirkt anisotrope Korrelationen der Geschwindigkeitskomponenten. Man nimmt an, dass diese Korrelationen die Dynamik der Sonne auf großen Längenskalen beeinflussen. Um horizontale Strömungen zu messen, untersuchen wir photosphärische Aufnahmen der Doppler-Geschwindigkeit und der Kontinuumsintensität des ``Helioseismic and Magnetic Imagers'' (HMI) an Bord der Raumsonde ``Solar Dynamics Observatory'' (SDO) mit Hilfe der Methoden Time-Distance-Helioseismologie (TD) und Local Correlation Tracking (LCT) von Granulen. Im Rahmen der Time-Distance-Helioseismologie kann die lokale vertikale Vortizität gemessen werden, indem die Differenz von Wellenlaufzeiten entlang eines geschlossenen Weges ermittelt wird (Laufzeiten gegen den Uhrzeigersinn minus Laufzeiten im Uhrzeigersinn). Die Ergebnisse von TD und LCT stimmen bis zu den höchsten studierten Breitengraden (+/-60°) hervorragend überein, nachdem eine Korrektur für so genannte Center-to-Limb-Effekte angewandt wurde. Nach dem Mitteln in Ost-West-Richtung messen wir abseits des Äquators eine schwache, aber signifikante Korrelation zwischen der horizontalen Komponente der Divergenz und der vertikalen Komponente der Vortizität von supergranularen Strömungen. Ein Vergleich der Messungen mit einem Modell für das Rauschen offenbart, dass die TD-Methode verwendet werden kann, um die vertikale Vortizität von Strömungen auf Längenskalen größer als 15 Mm zu messen. Damit können mit dieser Methode nicht nur Strömungen in Supergranulen, sondern auch in Riesenzellen gemessen werden. Wir stellen außerdem fest, dass das Signal in Messungen der vertikalen Vortizität mit Hilfe von Aufnahmen von SDO/HMI sehr viel leichter detektiert werden kann als mit Hilfe von früheren Aufnahmen. Um den Einfluss der Sonnenrotation auf die Supergranulation im Detail zu studieren, kartieren wir die vertikale Vortizität der Strömungen in der durchschnittlichen Supergranule. Die durchschnittliche Supergranule wird konstruiert, indem Tausende von einzelnen Supergranulen in einem bestimmten Breitengradbereich durch räumliche Verschiebungen zur Deckung gebracht werden. Damit lösen wir zum ersten Mal die vertikale Vortizität in Aus- und Einströmungen räumlich auf. In nördlichen Breiten sind Ausströmungen im Mittel mit einer Zirkulation im Uhrzeigersinn verbunden. Das Signal verschwindet am Äquator und hat in südlichen Breiten das umgekehrte Vorzeichen. Aus- und Einströmungen besitzen eine vertikale Vortizität mit entgegengesetzten Vorzeichen, wie es von Vorhersagen erwartet wird, die sich auf die Corioliskraft stützen. Es wird offenbar, dass der Vortizitätspeak in der durchschnittlichen supergranularen Ausströmung vergleichsweise ausgedehnt und schwach ist (Halbwertsbreite von 13 Mm und Spitzenwert von 4 x 10^{-6}/s im Uhrzeigersinn bei 40° nördlicher Breite), verglichen mit der durchschnittlichen Einströmung (Halbwertsbreite von 8 Mm und Spitzenwert von 8 x 10^{-6}/s gegen den Uhrzeigersinn). Darüberhinaus untersuchen wir mit SDO/HMI-Daten das Magnetfeld in den Einströmungen um die durchschnittliche Supergranule am Äquator herum. Die mittlere Stärke des Magnetfelds stellt sich als richtungsabhängig heraus: In westlicher Richtung (prograd) ist das Netzwerkfeld ungefähr 10% stärker als in östlicher Richtung. Dieses überraschende Ergebnis fügt dem Rätsel um die Supergranulation einen weiteren Aspekt hinzu. Ob ein Zusammenhang mit anderen bekannten Eigenschaften der Supergranulation besteht (beispielsweise zur Superrotation des supergranularen Strömungsmusters oder zu wellenartigen Eigenschaften), ist nicht geklärt. de
dc.language.iso eng de
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc 530 de
dc.title Measuring vortical flows in the solar interior de
dc.type cumulativeThesis de
dc.contributor.referee Gizon, Laurent Prof. Dr.
dc.date.examination 2015-07-27
dc.subject.gok Physik (PPN621336750) de
dc.description.abstracteng This thesis focuses on observations of the effects of rotation on solar convection at the length scales of supergranulation and larger (>30 Mm). Rotation drives vortical flows through the Coriolis force and causes anisotropic velocity correlations that are believed to influence the large-scale solar dynamics. We obtain horizontal flows using photospheric Doppler velocity and continuum intensity images from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) spacecraft via the techniques of time-distance helioseismology (TD) and local correlation tracking (LCT) of granules. In time-distance helioseismology, the local vertical vorticity can be measured by taking the difference between wave travel times measured in the anti-clockwise and clockwise directions along a closed contour. The agreement between the TD and LCT methods is excellent up to +/-60° latitude, provided that a center-to-limb correction is applied. Averaging over longitude, one finds that there is a small but significant correlation between the horizontal divergence and the vertical vorticity component of supergranular flows away from the solar equator. By comparison to a noise model, we find that the TD technique can be used to probe the vertical vorticity of flows on spatial scales larger than about 15 Mm, thus including supergranules and also giant cells. We also find that the vertical vorticity signal is much easier to measure using SDO/HMI observations than previous observations. The impact of the Sun's rotation on supergranulation is studied in detail by making spatial maps of the vertical vorticity of the flows associated with the average supergranule. The average supergranule is constructed by co-aligning thousands of individual supergranules in a given latitude band. For the first time, we are able to spatially resolve vorticity associated with inflows and outflow regions. In the northern hemisphere, outflows are on average associated with a clockwise circulation. The signal vanishes at the equator and has opposite sign in the southern hemisphere. Inflow and outflow regions have vertical vorticity of opposite sign, as expected from predictions based on the effects of the Coriolis force. The peak of the vertical vorticity in the average supergranular outflow region is rather broad and weak (full width at half maximum, FWHM, of 13 Mm and peak value of 4 x 10^{-6}/s clockwise at 40° latitude) compared to the average inflow region (8 Mm FWHM and peak value of 8 x 10^{-6}/s anti-clockwise). Furthermore, we study the magnetic field around the average supergranule (in the inflow regions) at the equator using SDO/HMI observations. We discover an anisotropy in the average magnetic field strength, which is larger in the west (prograde) than in the east by about 10%. This surprising result adds to the mystery of solar supergranulation. Whether it is connected to other supergranular properties, such as pattern superrotation or wavelike properties, is unclear. de
dc.contributor.coReferee Dreizler, Stefan Prof. Dr.
dc.contributor.thirdReferee Chou, Dean-Yi Prof. Dr.
dc.subject.eng Solar Physics de
dc.subject.eng Helioseismology de
dc.subject.eng Local correlation tracking de
dc.subject.eng Convection de
dc.subject.eng Supergranulation de
dc.subject.eng Vorticity de
dc.subject.eng Coriolis force de
dc.subject.eng Magnetic field de
dc.subject.eng Rotation de
dc.identifier.urn urn:nbn:de:gbv:7-11858/00-1735-0000-0023-962E-E-1
dc.affiliation.institute Fakultät für Physik de
dc.identifier.ppn 835704025

Files in this item

This item appears in the following Collection(s)

Show simple item record