• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Item View
  •   Home
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanoscale organization and dynamics of SNARE proteins in the presynaptic membranes

by Dragomir Milovanovic
Doctoral thesis
Date of Examination:2015-10-05
Date of issue:2015-10-19
Advisor:Prof. Dr. Reinhard Jahn
Referee:Prof. Dr. Stefan Hell
Referee:Prof. Dr. Andreas Janshoff
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-5310

 

 

Files in this item

Name:Milovanovic.pdf
Size:19.8Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

The specific organization of proteins and lipids in functional domains in biological membranes allows localization and segregation of specific physiological activities. Mechanisms that underlie the formation of these domains include hydrophobic and ionic interactions with membrane lipids as well as specific protein-protein interactions. Using plasma membrane-resident SNARE proteins as a model, I show that cholesterol-induced hydrophobic mismatch between the transmembrane domains and the membrane lipids not only suffices to induce clustering of proteins, but can also lead to the segregation of structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and proteins. Furthermore, Calcium ions act as a charge bridge that connects multiple syntaxin 1/PI(4,5)P2 complexes into larger domains. Segregating SNARE proteins into distinct clusters at the plasma membrane has three key functional implications for exocytosis: (i) clusters act as the local hot spots for the vesicle recruitment, (ii) the local enrichment provides sufficient number of proteins necessary for the fast, evoked synaptic release, (iii) closely homologous SNARE proteins such as syntaxin 1 and 4 are segregated in non-overlapping membrane domains which is essential for their distinct roles in regulated (syntaxin 1) and constitutive (syntaxin 4) exocytosis. Overall, the findings presented in this thesis demonstrate that the structural organization of membranes is governed by a hierarchy of interactions with hydrophobic mismatch emerging as one of the fundamental principles.
Keywords: SNARE; membrane domains; phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2); hydrophobic mismatch; clustering; syntaxin; protein-lipid interactions
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]