Data Compression for Helioseismology
von Björn Löptien
Datum der mündl. Prüfung:2015-07-29
Erschienen:2015-10-22
Betreuer:Prof. Dr. Laurent Gizon
Gutachter:Prof. Dr. Laurent Gizon
Gutachter:Prof. Dr. Manfred Schuessler
Dateien
Name:thesis_online.pdf
Size:9.18Mb
Format:PDF
Description:Dissertation
Zusammenfassung
Englisch
Efficient data compression will play an important role for several upcoming and planned space missions involving helioseismology, such as Solar Orbiter. Solar Orbiter, to be launched in October 2018, will be the next space mission involving helioseismology. The main characteristic of Solar Orbiter lies in its orbit. The spacecraft will have an inclined solar orbit, reaching a solar latitude of up to 33 deg. This will allow, for the first time, probing the solar poles using local helioseismology. In addition, combined observations of Solar Orbiter and another helioseismic instrument will be used to study the deep interior of the Sun using stereoscopic helioseismology. The Doppler velocity and continuum intensity images of the Sun required for helioseismology will be provided by the Polarimetric and Helioseismic Imager (PHI). Major constraints for helioseismology with Solar Orbiter are the low telemetry and the (probably) short observing time. In addition, helioseismology of the solar poles requires observations close to the solar limb, even from the inclined orbit of Solar Orbiter. This gives rise to systematic errors. In this thesis, I derived a first estimate of the impact of lossy data compression on helioseismology. I put special emphasis on the Solar Orbiter mission, but my results are applicable to other planned missions as well. First, I studied the performance of PHI for helioseismology. Based on simulations of solar surface convection and a model of the PHI instrument, I generated a six-hour time-series of synthetic Doppler velocity images with the same properties as expected for PHI. Here, I focused on the impact of the point spread function, the spacecraft jitter, and of the photon noise level. The derived power spectra of solar oscillations suggest that PHI will be suitable for helioseismology. The low telemetry of Solar Orbiter requires extensive compression of the helioseismic data obtained by PHI. I evaluated the influence of data compression using data provided by the Helioseismic and Magnetic Imager (HMI). HMI is an instrument onboard the Solar Dynamics Observatory (SDO), launched in 2010. It provides full disk images with high cadence of the continuum intensity, the Doppler-velocity and the full magnetic field vector. Using HMI Doppler-velocity maps, I showed that the signal-to-noise ratio of supergranulation in time-distance helioseismology is robust regarding lossy data compression. In addition, I proved that the accuracy and precision of probing differential rotation with local correlation tracking of granulation is not severely affected by extensive lossy data compression. This indicates that the low telemetry of Solar Orbiter may not be a major challenge for helioseismology.
Keywords: Solar Physics; Helioseismology; Local correlation tracking; Data compression; Supergranulation; Rotation
Weitere Sprachen
Die effiziente Kompression von Daten wird eine wichtige Rolle für mehrere bevorste-
hende und geplante Weltraummissionen spielen, die Helioseismologie betreiben werden,
wie beispielsweise Solar Orbiter. Solar Orbiter ist die nächste Mission, die Helioseismologie beinhaltet, und soll im Oktober 2018 gestartet werden. Das Hauptmerkmal von
Solar Orbiter ist der Orbit. Die Umlaufbahn des Satelliten wird zur Ekliptik geneigt
sein, sodass der Satellit einen solaren Breitengrad von bis zu 33 Grad erreichen wird. Dies
wird erstmals ermöglichen, die Pole der Sonne mit Hilfe von lokaler Helioseismologie
zu studieren. Zusätzlich dazu können kombinierte Beobachtungen von Solar Orbiter
und einem anderen Instrument dazu benutzt werden, die tiefen Schichten der Sonne
mittels stereoskopischer Helioseismologie zu erforschen. Die Aufnahmen der Dopplergeschwindigkeit und der Kontinuumsintensität, die für Helioseismologie benötigt werden, werden vom Polarimetric and Helioseismic Imager (PHI) geliefert werden.
Große Hindernisse für Helioseismologie mit Solar Orbiter sind die niedrige Datenüber-
tragungsrate und die (wahrscheinlich) kurzen Beobachtungszeiten. Außerdem erfordert
die Untersuchung der Pole der Sonne Beobachtungen in der Nähe des Sonnenrandes,
sogar von dem geneigten Orbit von Solar Orbiter aus. Dies kann zu systematischen
Fehlern führen.
In dieser Doktorarbeit gebe ich eine erste Einschätzung ab, wie stark Helioseismologie
von verlustbehafteter Datenkompression beeinflusst wird. Mein Schwerpunkt liegt dabei
auf der Solar Orbiter Mission, die von mir erzielten Ergebnisse sind aber auch auf andere
geplante Missionen übertragbar.
Zunächst habe ich mit Hilfe synthetischer Daten die Eignung des PHI Instruments für
Helioseismologie getestet. Diese basieren auf Simulationen der Konvektion nahe der Sonnenoberfläche und einem Modell von PHI. Ich habe eine sechs Stunden lange Zeitreihe
synthetischer Daten erstellt, die die gleichen Eigenschaften wie die von PHI erwarteten
Daten haben. Hierbei habe ich mich auf den Einfluss der Punktspreizfunktion, der Vibrationen des Satelliten und des Photonenrauschen konzentriert. Die von diesen Daten
abgeleitete spektrale Leistungsdichte der solaren Oszillationen legt nahe, dass PHI für
Helioseismologie geeignet sein wird.
Aufgrund der niedrigen Datenübertragungsrate von Solar Orbiter müssen die von
PHI für die Helioseismologie gewonnenen Daten stark komprimiert werden. Ich habe
den Einfluss von Kompression mit Hilfe von Daten getestet, die vom Helioseismic and
Magnetic Imager (HMI) stammen. HMI ist ein Instrument an Bord des Solar Dynam-
ics Observatory Satelliten (SDO), der 2010 gestartet worden ist. HMI erstellt mit hoher
zeitlicher Abfolge Karten der Kontinuumsintensität, der Dopplergeschwindigkeit und des
kompletten Magnetfeldvektors für die komplette von der Erde aus sichtbare Hemispäre
der Sonne. Mit Hilfe mit von HMI aufgenommenen Karten der Dopplergeschwindigkeit
konnte ich zeigen, dass das Signal-zu-Rausch Verhältnis von Supergranulation in der
Zeit-Entfernungs Helioseismologie nicht stark von Datenkompression beeinflusst wird.
Außerdem habe ich nachgewiesen, dass die Genauigkeit und Präzision von Messungen
der Sonnenrotation mittels Local Correlation Tracking von Granulation durch verlust-
behaftete Datenkompression nicht wesentlich verschlechtert werden. Diese Ergebnisse
deuten an, dass die niedrige Datenübertragungsrate von Solar Orbiter nicht unbedingt ein
großes Hinderniss für Helioseismologie sein muss.