Navigation ▼

Zur Kurzanzeige

dc.contributor.advisor Huckemann, Stephan F. Prof. Dr.
dc.contributor.author Telschow, Fabian Joachim Erich
dc.date.accessioned 2016-11-04T09:37:31Z
dc.date.available 2016-11-04T09:37:31Z
dc.date.issued 2016-11-04
dc.identifier.uri http://hdl.handle.net/11858/00-1735-0000-002B-7C63-3
dc.language.iso eng de
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc 510 de
dc.title Equivariant Functional Shape Analysis in SO(3) with Applications to Gait Analysis de
dc.type doctoralThesis de
dc.contributor.referee Huckemann, Stephan F. Prof. Dr.
dc.date.examination 2016-09-16
dc.description.abstracteng In gait analysis of the knee joint the data is given by curves in the group of $3\times3$ rotation matrices. We introduce $\mathcal{S}$-equivariant functional models (viz., Gaussian perturbations of a center curve) and provide a uniform strong consistent estimator for the center curves. Here $\mathcal{S}$ is a certain Lie group, which models the effect of different marker placements and self-chosen walking speeds in real gait data. For this setup we provide estimators correcting for different marker placements and walking speeds and provide different statistical tools for example simultaneous confidence sets and permutation tests to analyze such data. The methods are applied to real gait data from an experiment studying the effect of short kneeling. de
dc.contributor.coReferee Munk, Axel Prof. Dr.
dc.subject.eng Lie groups de
dc.subject.eng Gauss process de
dc.subject.eng non-euclidean statistics de
dc.subject.eng simultaneous confidence bands de
dc.subject.eng perturbation models de
dc.identifier.urn urn:nbn:de:gbv:7-11858/00-1735-0000-002B-7C63-3-5
dc.affiliation.institute Fakultät für Mathematik und Informatik de
dc.subject.gokfull Mathematics (PPN61756535X) de
dc.identifier.ppn 871825414

Dateien

Das Dokument erscheint in:

Zur Kurzanzeige