Show simple item record

Coarse Geometry for Noncommutative Spaces

dc.contributor.advisorMeyer, Ralf Prof. Dr.
dc.contributor.authorBanerjee, Tathagata
dc.date.accessioned2016-11-23T09:37:43Z
dc.date.available2016-11-23T09:37:43Z
dc.date.issued2016-11-23
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-002B-7CB9-3
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-5996
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc510de
dc.titleCoarse Geometry for Noncommutative Spacesde
dc.typedoctoralThesisde
dc.contributor.refereeMeyer, Ralf Prof. Dr.
dc.date.examination2015-11-25
dc.description.abstractengWe develop an analogoue of coarse geometry for noncommutative spaces in terms of unitizations of the given C* -algebra. Examples for our theory come from Rieffel deformation of compactifications under strongly continuous actions of R^d. A special case of this is the coarse structure on the Moyal plane, seen as a Rieffel deformation of the classical plane. The motivating question for this project has been to investigate a possible coarse equivalence between the classical plane and the Moyal plane, which seems plausible in physics. We define a noncommutative analogue of coarse maps. Our definition ensures that the classical and the Moyal plane with their standard coarse structures are coarsely equivalent. A more general result holds for Rieffel deformations of arbitrary actions of R^d by translations.de
dc.contributor.coRefereeSchick, Thomas Prof. Dr.
dc.subject.engC*-algebrade
dc.subject.engCoarse structurede
dc.subject.engCompactificationde
dc.subject.engRieffel deformationde
dc.identifier.urnurn:nbn:de:gbv:7-11858/00-1735-0000-002B-7CB9-3-5
dc.affiliation.instituteFakultät für Mathematik und Informatikde
dc.subject.gokfullMathematics (PPN61756535X)de
dc.identifier.ppn873138562


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record