dc.contributor.advisor | Meyer, Ralf Prof. Dr. | |
dc.contributor.author | Banerjee, Tathagata | |
dc.date.accessioned | 2016-11-23T09:37:43Z | |
dc.date.available | 2016-11-23T09:37:43Z | |
dc.date.issued | 2016-11-23 | |
dc.identifier.uri | http://hdl.handle.net/11858/00-1735-0000-002B-7CB9-3 | |
dc.identifier.uri | http://dx.doi.org/10.53846/goediss-5996 | |
dc.language.iso | eng | de |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 510 | de |
dc.title | Coarse Geometry for Noncommutative Spaces | de |
dc.type | doctoralThesis | de |
dc.contributor.referee | Meyer, Ralf Prof. Dr. | |
dc.date.examination | 2015-11-25 | |
dc.description.abstracteng | We develop an analogoue of coarse geometry for noncommutative spaces in
terms of unitizations of the given C* -algebra. Examples for our theory come
from Rieffel deformation of compactifications under strongly continuous actions
of R^d. A special case of this is the coarse structure on the Moyal plane, seen
as a Rieffel deformation of the classical plane. The motivating question for
this project has been to investigate a possible coarse equivalence between the
classical plane and the Moyal plane, which seems plausible in physics. We define
a noncommutative analogue of coarse maps. Our definition ensures that the
classical and the Moyal plane with their standard coarse structures are coarsely
equivalent. A more general result holds for Rieffel deformations of arbitrary
actions of R^d by translations. | de |
dc.contributor.coReferee | Schick, Thomas Prof. Dr. | |
dc.subject.eng | C*-algebra | de |
dc.subject.eng | Coarse structure | de |
dc.subject.eng | Compactification | de |
dc.subject.eng | Rieffel deformation | de |
dc.identifier.urn | urn:nbn:de:gbv:7-11858/00-1735-0000-002B-7CB9-3-5 | |
dc.affiliation.institute | Fakultät für Mathematik und Informatik | de |
dc.subject.gokfull | Mathematics (PPN61756535X) | de |
dc.identifier.ppn | 873138562 | |