• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Physik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Physik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Localizing and tracking of fluorescent molecules with minimal photon fluxes

by Yvan Eilers
Doctoral thesis
Date of Examination:2017-02-07
Date of issue:2018-01-19
Advisor:Prof. Dr. Stefan Hell
Referee:Prof. Dr. Sarah Köster
Referee:Prof. Dr. Claus Ropers
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-6540

 

 

Files in this item

Name:thesisYvanEilers.pdf
Size:12.8Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

In this thesis MINFLUX is presented, a novel optical scheme to determine the position of individual photon emitters in space. By probing the emitter with adapted illumination profiles featuring an intensity zero, the number of emitted photons needed for precise localization can be minimized. Proof-of-concept measurements on static emitters reduced the number of photon detections by 22-fold at equal localization precision compared to widespread camera-based methods. Localization precisions of 2.5 nanometer were realized at 400 microsecond time resolution using only 100 photons. With MINFLUX, the temporal resolution in single molecule tracking experiments of mEos2 fused to 30S ribosomal subunits could be increased by 100-fold. Using the available photons more effectively, the number of localizations was enhanced by more than an order of magnitude permitting a 3-fold improvement in the diffusion coefficient estimation precision. Theoretical evaluations showed that it can be expected that future MINFLUX implementations will improve the spatio-temporal resolution beyond the presented experimental results and thus further facilitate the study of fundamental processes in living organisms at their characteristic time and length scales.
Keywords: Single molecule tracking; MINFLUX; Superresolution microscopy; Nanoscopy
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]