• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Physik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Physik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical and biochemical stimulation of suspended cells in a microfluidic device probed with dual optical tweezers

by Samaneh Rezvani Boroujeni
Doctoral thesis
Date of Examination:2017-11-17
Date of issue:2018-01-30
Advisor:Prof. Dr. Christoph F. Schmidt
Referee:Prof. Dr. Andreas Janshoff
Referee:Dr. Claus Heussinger
Referee:Prof. Dr. Marcus Müller
Referee:Prof. Dr. Stefan Klumpp
Referee:Dr. Andreas Neef
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-6701

 

 

Files in this item

Name:RezvaniSamaneh-Dissertation2017.pdf
Size:11.3Mb
Format:PDF
Description:PhD Dissertation-2017
ViewOpen

The following license files are associated with this item:


Abstract

English

Cells communicate with their environment through biochemical and mechanical interactions. They can respond to stimuli by undergoing shape- and, in some situations, volume changes. Key determinants of the mechanical response of a cell are the viscoelastic properties of the actomyosin cortex, effective surface tension, and osmotic pressure. It is challenging to measure the mechanical response of cells while changing environmental conditions. We here demonstrate the use of a novel microfluidic device with integrated hydrogel micro-windows to change solution conditions for cells suspended by optical traps. Solution conditions can be rapidly changed in this device without exposing the cells to direct fluid flow. We use biochemical inhibitors and varying osmotic conditions and investigate the time-dependent response of individual cells. Using a dual optical trap makes it possible to probe the viscoelasticity of suspended cells by active and passive microrheology and to quantify force fluctuations generated by the cells at the same time.
Keywords: optical tweezers; microfluidic device; microrheology; osmotic pressure; viscoelastic properties; suspended cells; time-resolved response; actomyosin cell cortex
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]