• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characters on infinite groups and rigidity

by Rahel Brugger
Doctoral thesis
Date of Examination:2018-02-07
Date of issue:2018-05-02
Advisor:Prof. Dr. Thomas Schick
Referee:Prof. Dr. Thomas Schick
Referee:Prof. Dr. Ralf Meyer
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-6832

 

 

Files in this item

Name:Dissertation_Brugger.pdf
Size:467.Kb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

We show that for a strong extension of discrete measured groupoids $1\to\mathcal{S}\to\mathcal{G}\to\mathcal{Q}\to 1$ with $L\mathcal{G}$ a finite factor, $\mathcal{Q}$ has poperty (T) if and only if the inclusion of $L\mathcal{S}$ into $L\mathcal{G}$ is corigid. In particular, this implies that $\mathcal{G}$ has property (T) if and only if $L^\infty(X)\subset L\mathcal{G}$ is corigid. Furthermore, we give the definition of an invariant random positive definite function on a discrete group, generalizing both the notion of an Invariant Random Subgroup and a character. We use von Neumann algebras to show that all invariant random positive definite functions on groups with infinite conjugacy classes which integrate to the regular character are constant. We also show a rigidity result for subfactors that are normalized by a representation of a lattice $\Gamma$ in a higher rank simple Lie group with trivial center into a finite factor. This implies that every subfactor of $L\Gamma$ which is normalized by the natural copy of $\Gamma$ is trivial or of finite index.
Keywords: von Neumann algebras; property (T); invariant random positive definite functions; measured groupoids; characters; rigidity
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Data Protection Information
Göttingen State and University Library | Göttingen University