• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

New topological and index theoretical methods to study the geometry of manifolds

by Martin Nitsche
Doctoral thesis
Date of Examination:2018-02-06
Date of issue:2018-07-31
Advisor:Prof. Dr. Thomas Schick
Referee:Prof. Dr. Thomas Schick
Referee:Prof. Dr. Ralf Meyer
Referee:Prof. Dr. Dorothea Bahns
Referee:Prof. Dr. Viktor Pidstrygach
Referee:Prof. Dr. Karl-Henning Rehren
Referee:Prof. Dr. Max Wardetzky
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-6978

 

 

Files in this item

Name:Dissertation.pdf
Size:564.Kb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

For a $\mathit{Spin}$ manifold $M$ the Rosenberg index $\alpha([M])$ is an obstruction against positive scalar curvature metrics. When $M$ is non-$\mathit{Spin}$ but $\mathit{Spin}^c$, Bolotov and Dranishnikov suggested to apply the Rosenberg index to a suitable $S^1$-bundle $L\to M$. We study this approach, in particular for the case $\pi_1(L)\neq\pi_1(M)$. We explain how the bundle construction can be turned into a non-trivial natural transformation of bordism groups $\Omega^{\mathit{Spin}^c}\to\Omega^\mathit{Spin}$. Then we show that $\alpha([L])\in\mathit{KO}(C^*(\pi_1(L)))$ always vanishes, but also give an example where $L$ nonetheless does not admit a positive scalar curvature metric. The second part of the thesis concerns the relation of $\alpha([N])$ and $\alpha([M])$ for certain codimension-2 submanifolds $N\subset M$. Following a construction of Engel we extend the Thom map $\mathit{KO}_*(M)\to\mathit{KO}_{*-2}(N)$ to $\mathit{KO}_*(\mathbf{B}\pi_1(M))\to\mathit{KO}_{*-2}(\mathbf{B}\pi_1(N))$, and then further to $\mathit{KO}_*^{\pi_1(M)}(\mathbf{\underline{E}}\pi_1(M))\to\mathit{KO}_{*-2}^{\pi_1(N)}(\mathbf{\underline{E}}\pi_1(N))$.
Keywords: positive scalar curvature; Rosenberg index; geometric K-homology; circle bundle; classifying space for proper actions; codimension-2 transfer; Spin^c
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Data Protection Information
Göttingen State and University Library | Göttingen University