Land use and land cover changes in South East Asia: The effects of land transformations on biophysical variables in Indonesia
by Clifton Ralph Sabajo
Date of Examination:2018-06-22
Date of issue:2018-10-01
Advisor:Prof. Dr. Alexander Knohl
Referee:Prof. Dr. Dirk Hölscher
Referee:Prof. Dr. Oleg Panferov
Files in this item
Name:C.R.Sabajo_Dissertation_2018.pdf
Size:2.06Mb
Format:PDF
Description:Doctoral dissertation
Abstract
English
Over the last decades, Indonesia has experienced dramatic land transformations with an expansion of oil palm plantations at the expense of tropical forests. Indonesia is currently one of the regions with the highest transformation rate of the land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. As vegetation is a modifier of the climate near the ground these large-scale land transformations have major impacts on surface biophysical variables such as land surface temperature (LST), albedo, vegetation indices (e.g. the normalized difference vegetation index, NDVI), on the surface energy balance and energy partitioning. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on biophysical variables in Indonesia. To assess such changes at regional scale remote sensing data are needed. As a key driver for many ecological functions, LST is directly affected by land cover changes. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which experienced large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, NDVI, and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 ºC (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets an albedo warming effect. Young and mature oil palm plantations differenced in their biophysical. To study the development of surface biophysical variables during the 20 – 25 years rotation cycle of oil palm plantations, we used three Landsat images from the Jambi province in Sumatra/Indonesia covering a chronosequence of oil palm plantations. Our results show that differences between oil palm plantations in different stages of the oil palm rotation cycle are reflected in differences in the surface energy balance, energy partitioning and biophysical variables. During the oil palm plantation lifecycle the surface temperature differences to forest gradually decrease and approach zero around the mature oil palm plantation stage of 10 years. Concurrently, NDVI increases and the albedo decreases approaching typical values of forests. The surface energy balance and energy partitioning show a development patterns related to biophysical variables and the age of the oil palm plantations. Newly established and young plantations (< 5 years) have less net radiation available than mature oil palm plantations, yet have higher surface temperatures than mature oil palm plantations. The changes in biophysical variables, energy balance and energy partitioning during the oil palm rotation cycle can be explained by the previously identified evaporative cooling effect in which the albedo warming effect is offset. A main determinant in this mechanism is the vegetation cover during the different phases in the oil palm rotation cycle. NDVI as a proxy for vegetation cover showed a consistent inverse relation with the LST of different aged oil palm plantations, a trend that is also observed for different land use types in this study. On a regional and longer time scale, the analysis of the LST trend between 2000 and 2015 based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 ºC, which followed the trend of observed land cover changes and exceed the effects of climate warming. In order to assess the full climate effects of oil palm expansion the surface energy balance, energy partitioning and biophysical processes play an important role and the full rotation cycle of oil palm plantations need to be considered. Based on our result we construct the rotation cycle of oil palm plantations and the changes that occur during the development of oil palm vegetation. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of air temperature because of climate change. By using high-resolution Landsat data we were able to include the effects of land use change on biophysical variables. Understanding the effects of land cover change on the biophysical variables may support policies regarding conservation of the existing forests, planning and expansion of the oil palm plantations and possible afforestation measures. Knowledge of biophysical variables, radiation balance and energy partitioning during the rotation cycle of oil palm can be used to including new management practices that could reduce the extreme environmental and microclimatic conditions in the initial phase of the oil palm plantations.
Keywords: Indonesia; Remote sensing; Oil palm; Surface energy balance; Surface temperature; MODIS; Landsat; Surface biophysical variables; Land use and land cover change; Chronosequence; Evapotranspiration
German
In den letzten Jahrzehnten hat Indonesien umfassende Veränderungen der Landnutzung mit einer Ausweitung von Ölpalmplantagen auf Kosten tropischer Wälder erlebt. Derzeit ist Indonesien weltweit eine der Regionen mit der höchsten Umwandlungsrate der Landnutzung, die mit der Ersetzung von Wäldern durch Ölpalmplantagen und andere Nutzpflanzen verbunden ist. Da die Vegetation ein Einflussfaktor für das Bodenklima ist, haben diese großflächigen Landtransformationen große Auswirkungen auf die biophysikalischen Variablen wie Landoberflächentemperatur (LST), Albedo, Vegetationsindizes (z.B. der normalisierte Differenzvegetationsindex, NDVI) und auf die Energiebilanz und die verschiedenen Komponenten der ausgetauschten Energie. Trotz des großen Umfangs der bereits vollzogenen und von der Regierung geplanten Landtransformationen in Indonesien hin zu Ölpalmplantagen und anderen Nutzpflanzen, ist dies die bisher erste Studie, welche die Auswirkungen dieser Landtransformation auf die biophysikalischen Variablen in Indonesien quantifiziert. Um solche Veränderungen auf regionaler Ebene zu bewerten, werden Fernerkundungsdaten benötigt. Als einer der Hauptantriebsfaktoren für viele ökologische Prozesse ist die LST direkt von Veränderungen der Landnutzung betroffen. Wir analysieren die LST aus dem thermischen Band eines Landsat-Bildes und erstellen eine hochauflösende Oberflächentemperaturkarte (30 m) für das Tiefland der Provinz Jambi auf Sumatra (Indonesien), eine Region die in den letzten Jahrzehnten eine große Landumwandlung hin zu Ölpalmen und anderen Nutzpflanzen erfahren hat. Der Vergleich von LST, Albedo, NDVI und Evapotranspiration (ET) zwischen sieben verschiedenen Landbedeckungstypen (Wald, städtische Gebiete, Brachland, junge und reife Ölpalmplantagen, Akazien- und Kautschukplantagen) zeigt, dass Wälder niedrigere Oberflächentemperaturen haben als die anderen Landbedeckungstypen, was auf einen lokalen Erwärmungseffekt nach der Umwandlung des Waldes in einen anderen Landbedeckungstyp hindeutet. Die LST-Unterschiede betrugen bis zu 10,1 ± 2,6 ºC (Mittelwert ± Standardabweichung) zwischen Wald und Brachland. Die Unterschiede in den Oberflächentemperaturen lassen sich durch einen Verdunstungskälteeffekt, der den Albedo-Erwärmungseffekt kompensiert erklären. Auf Grundlage der beobachteten Unterschieden in den biophysikalischen Variablen zwischen reifen und jungen Ölpalmplantagen, analysieren wir drei Landsat-Bilder, die eine Chronosequenz von Ölpalmplantagen enthalten um die Entwicklung von biophysikalischen Oberflächenvariablen während des 20-25 jährigen Rotationszyklus der Ölpalmplantagen zu untersuchen. Unsere Ergebnisse zeigen, dass sich die Unterschiede zwischen Ölpalmplantagen in verschiedenen Phasen des Ölpalmen-Rotationszyklus in Unterschieden in der Energiebilanz, Energiepartitionierung und biophysikalischen Variablen widerspiegeln. Während des Lebenszyklus der Ölpalmplantage nehmen die Oberflächentemperaturunterschiede allmählich ab und nähern sich grob den Werten der reifen Ölpalmphase mit einem Alter von 10 Jahren. Gleichzeitig nimmt der NDVI zu und der Albedo ab und beide Größen nähern sich den typischen Werten von Wäldern. Die Energiebilanz und die Energiepartitionierung zeigen einen Entwicklungstrend, der mit den biophysikalischen Variablen und mit dem Alter der Ölpalmplantagen zusammenhängt. Neu etablierte und junge Plantagen (<5 Jahre) haben eine geringere Nettostrahlung als reife Ölpalmplantagen, aber eine höhere Oberflächentemperaturen als reife Ölpalmplantagen. Die Veränderungen der biophysikalischen Variablen, der Energiebilanz und der Energieaufteilung während des Ölpalmen-Rotationszyklus können durch den zuvor identifizierten Verdunstungskälteeffekt erklärt werden, durch den der Albedo-Erwärmungseffekt kompensiert wird. Eine Hauptdeterminante in diesem Mechanismus ist die Vegetationsbedeckung während der verschiedenen Phasen im Rotationszyklus der Ölpalme. Der NDVI als Proxy für die Vegetationsbedeckung zeigt einen inversen Zusammenhang zur LST der Ölpalmplantagen unterschiedlichen Alters; ein Trend, der auch für andere Landnutzungstypen in dieser Studie beobachtet wurde. In einer auf MODIS Daten basierenden regionalen und langfristigeren Analyse des LST-Trends zwischen den Jahren 2000 und 2015 zeigt sich, dass die durchschnittliche Tagesoberflächentemperatur in der Provinz Jambi um 1,05 °C gestiegen ist, was dem Trend der beobachteten Landbedeckungsänderungen folgt und die Auswirkungen der Klimaerwärmung übersteigt. Um die volle Auswirkungen der Ölpalmenexpansion auf das Klima abzuschätzen, spielen die Energiebilanz, die Energiepartitionierung und biophysikalische Prozesse eine wichtige Rolle, wobei der gesamte Rotationszyklus von Ölpalmplantagen berücksichtigt werden muss. Basierend auf unseren Ergebnissen entwickeln wir eine Struktur des Rotationszyklus von Ölpalmplantagen der die während der Entwicklung der Ölpalmenvegetation auftretenden Veränderungen darstellt. Diese Studie belegt, dass die Ausweitung von Ölpalmplantagen und anderen Nutzpflanzen zu Veränderungen der biophysikalischen Variablen führt, die die Landoberfläche erwärmen und somit den Anstieg der Lufttemperatur aufgrund des Klimawandels verstärken. Durch den Einsatz von hochauflösenden Landsat-Daten konnten wir die Auswirkungen von Landnutzungsänderungen auf biophysikalische Variablen in unserer Analyse einbeziehen. Ein besseres Verständnis der Auswirkungen von Landbedeckungsänderungen auf die biophysikalischen Variablen kann Maßnahmen zur Erhaltung der bestehenden Wälder, zur Planung und zum Ausbau von Ölpalmplantagen und zu möglichen Aufforstungsmaßnahmen unterstützen. Wissen über biophysikalische Variablen, Strahlungsbilanz und Energieaufteilung während des Rotationszyklus der Ölpalme können verwendet werden, um neue Managementpraktiken einzubeziehen, die die extreme ökologischen und mikroklimatischen Bedingungen in der Anfangsphase der Ölpalmplantagen reduzieren könnten.Other Languages
Au cours des dernières décennies, l'Indonésie a connu des transformations spectaculaires des terres avec une expansion des plantations de palmiers à huile au détriment des forêts tropicales. L'Indonésie est actuellement l'une des régions ayant le plus haut taux de transformation de la surface terrestre dans le monde à cause de l'expansion des plantations de palmiers à huile et d'autres agricultures qui remplacent les forêts à grande échelle. Comme la végétation est un modificateur du climat près du sol, ces transformations à grande échelle ont des impacts majeurs sur les variables biophysiques de surface telles que la température de surface, l'albédo, les indices de végétation (NDVI), sur le bilan énergétique de surface et le partitionnement énergétique.
Ce travail de thèse vise à quantifier les impacts des changements d’usage des terres en Indonésie sur les variables biophysiques de surface. Pour évaluer ces changements à l'échelle régionale, des données de télédétection sont nécessaires.
Étant une variable clé de nombreuses fonctions écologiques, la température de surface (LST) est directement affectée par les changements de la couverture terrestre. Nous avons analysé la LST à partir de la bande thermique d'une image Landsat et produit une carte de température de surface avec une haute résolution (30m) pour les basses terres de la province de Jambi à Sumatra (Indonésie), une région qui a subi de grandes transformations au cours des dernières décennies. La comparaison des LST, albédo, NDVI et évapotranspiration (ET) entre sept différents types de couverture terrestre (forêts, zones urbaines, terres incultes, plantations de palmiers à huile jeunes et matures, plantations d'acacias et de caoutchouc) montre que les forêts ont des températures de surface inférieures à celles des autres types de couvert végétal, ce qui indique un effet de réchauffement local après la conversion des forêts vers des plantations. Les différences de LST atteignaient 10,1 ± 2,6 ºC (moyenne ± écart-type) entre les forêts et les terres déforestées. Les différences de températures de surface s'expliquent par un effet de refroidissement évaporatif des forêts, qui compense l'effet de réchauffement de l'albédo.
Basé sur des différences observées dans les variables biophysiques entre les plantations de palmiers à huile jeunes et matures, nous avons analysé trois images Landsat couvrant une chronoséquence de plantations de palmiers à huile pour étudier la dynamique des variables biophysiques de surface pendant le cycle de rotation de 20-25 ans des plantations de palmiers à huile.
Nos résultats montrent que les différences entre les plantations de palmiers à huile à différents stades du cycle de rotation du palmier à huile se reflètent dans les différences du bilan énergétique de surface, du partitionnement énergétique et des variables biophysiques. Au cours du cycle de rotation des plantations de palmiers à huile, les différences de température à la surface diminuent graduellement et se rapprochent de zéro autour du stade mature de la plantation de palmiers à huile de 10 ans. Parallèlement, le NDVI augmente et l'albédo diminue à proximité des valeurs typiques des forêts. Le bilan énergétique de surface et le partitionnement énergétique montrent des tendances de développement liés aux variables biophysiques et à l'âge des plantations de palmiers à huile. Les nouvelles plantations et les jeunes plantations (<5 ans) ont un rayonnement net plus faible que les plantations de palmiers à huile matures, mais ont des températures de surface plus élevées que les plantations de palmiers à huile matures.
Les changements dans les variables biophysiques, le bilan énergétique et la répartition de l'énergie au cours du cycle d’une rotation du palmier à huile peuvent s'expliquer par l'effet de refroidissement évaporatif précédemment identifié dans les forêts, qui compense l'effet de réchauffement de l'albédo. L'un des principaux déterminants de ce mécanisme est la couverture végétale au cours des différentes phases du cycle de rotation du palmier à huile. Le NDVI en tant qu'indicateur du couvert végétal a montré une relation inverse cohérente avec LST de différentes plantations de palmiers à huile âgés, une tendance qui est également observée pour différents types d'utilisation des terres dans cette étude.
Une analyse régionale et à plus long terme de la tendance LST entre 2000 et 2015 basée sur les données MODIS montre que dans la journée la température moyenne de Jambi a augmenté de 1,05 ºC, suivant la tendance des changements observés et dépassant les effets du réchauffement climatique.
Afin d'évaluer les effets de l'expansion du palmier à huile sur le climat, le bilan énergétique de surface, le partitionnement énergétique et les processus biophysiques jouent un rôle important et le cycle complet de rotation des plantations de palmiers à huile doit être envisagé. Basé sur nos résultats, nous construisons le cycle de rotation des plantations de palmiers à huile et les changements qui se produisent au cours du développement de la végétation de palmiers à huile.
Cette étude fournit des preuves que l'expansion des plantations de palmiers à huile et d'autres cultures commerciales entraîne des changements dans les variables biophysiques, réchauffant la surface du sol et augmentant ainsi l'augmentation de la température de l'air à cause du changement climatique. En utilisant des données Landsat à haute résolution, nous avons pu inclure les effets du changement d'utilisation des terres sur les variables biophysiques. Comprendre les effets du changement de la couverture terrestre sur les variables biophysiques peut soutenir des politiques concernant la conservation des forêts existantes, la planification et l'expansion des plantations de palmiers à huile et les mesures de boisement possibles. La connaissance des variables biophysiques, du bilan radiatif et de la répartition énergétique au cours du cycle de rotation du palmier à huile peut inclure de nouvelles pratiques de gestion susceptibles de réduire les conditions environnementales et microclimatiques extrêmes dans la phase initiale des plantations de palmiers à huile.