Exakte Moduln über dem von Manuel Köhler beschriebenen Ring
Exact modules over Manuel Köhler's ring
by Vincent Grande
Date of Examination:2018-09-12
Date of issue:2018-11-13
Advisor:Prof. Dr. Ralf Meyer
Referee:Prof. Dr. Ralf Meyer
Referee:Prof. Dr. Preda Mihailescu
Files in this item
Name:GrandeBachelorThesis.pdf
Size:533.Kb
Format:PDF
Abstract
English
When proving an equivariant universal coefficient theorem for C*-Algebras acted on by a finite cyclic group Z/pZ, Manuel Köhler introduces the endomorphism ring R of the tuple (C,C(G),D). The aim of this thesis is to show a structure theorem and provide examples for a certain simple class of R-modules closely related to Cuntz-algebras by fixing the first of three components of the module to be 0, Z or Z/a. While we get a nice structure theorem for the case (a,p)=1, more complicated things happen in the case a=p. The resulting modules will turn out to have a close relation to the p-adic numbers.
Keywords: KK-Theory; Cyclotomic fields; p-adic integers; commutative algebra
Schlagwörter: KK-Theorie; Zyklotomische Körper; p-adische Zahlen; Kommutative Algebra