• Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
Dokumentanzeige 
  •   Startseite
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Dokumentanzeige
  •   Startseite
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressed Sensing and ΣΔ-Quantization

von Joe-Mei Feng
Dissertation
Datum der mündl. Prüfung:2018-02-12
Erschienen:2019-02-11
Betreuer:Prof. Dr. Felix Krahmer
Gutachter:Prof. Dr. Gerlind Plonka-Hoch
Gutachter:Dr. Sjoerd Dirksen
Gutachter:Prof. Dr. Anita Schöbel
Gutachter:Prof. Dr. Russell Luke
Gutachter:Dr. Timo Aspelmeier
crossref-logoZum Verlinken/Zitieren: http://dx.doi.org/10.53846/goediss-7272

 

 

Dateien

Name:e-publication.pdf
Size:1.63Mb
Format:PDF
ViewOpen

Lizenzbestimmungen:


Zusammenfassung

Englisch

The main issue of my thesis is to bound the error while recovering signals from their compressed and quantized form. Especially my central contribution is that, together with my co-authors, we provide the first analysis of a non-trivial quantization scheme for compressed sensing measurements arising from structured measurements. Specifically, our analysis studies compressed sensing matrices consisting of rows selected at random, without replacement, from a circulant matrix generated by a random subgaussian vector. We quantize the measurements using stable, possibly one-bit, Sigma-Delta schemes, and use a reconstruction method based on convex optimization. We show that the part of the reconstruction error due to quantization decays polynomially in the number of measurements. This is in-line with analogous results on Sigma-Delta quantization associated with random Gaussian or subgaussian matrices, and significantly better than results associated with the widely assumed memoryless scalar quantization. Moreover, we prove that our approach is stable and robust; i.e., the reconstruction error degrades gracefully in the presence of non-quantization noise and when the underlying signal is not strictly sparse. The analysis relies on results concerning subgaussian chaos processes as well as a variation of McDiarmid's inequality. Also my co- author and I provide a new approach to estimating the error of re- construction from ΣΔ-quantized compressed sensing measurements. Our method is based on the restricted isometry property (RIP) of a certain projection of the measurement matrix. Our result yields simple proofs and a slight generalization of the best-known reconstruction error bounds for Gaussian and subgaussian measurement matrices.
Keywords: Compressed; Sensing; Quantization; ΣΔ-Quantization
 

Statistik

Hier veröffentlichen

Blättern

Im gesamten BestandFakultäten & ProgrammeErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTypIn dieser FakultätErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTyp

Hilfe & Info

Publizieren auf eDissPDF erstellenVertragsbedingungenHäufige Fragen

Kontakt | Impressum | Cookie-Einwilligung | Datenschutzerklärung
eDiss - SUB Göttingen (Zentralbibliothek)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
ediss_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]
Niedersächsische Staats- und Universitätsbibliothek | Georg-August Universität
Bereichsbibliothek Medizin (Nur für Promovierende der Medizinischen Fakultät)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
bbmed_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]