• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Harmonic analysis on 2-step stratified Lie groups without the Moore-Wolf condition

by Zhipeng Yang
Doctoral thesis
Date of Examination:2022-03-09
Date of issue:2022-04-07
Advisor:Prof. Dr. Ingo Witt
Referee:Prof. Dr. Ingo Witt
Referee:Prof. Dr. Dorothea Bahns
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-9171

 

 

Files in this item

Name:Harmonic_analysis_on_stratified_Lie_groups_o...pdf
Size:1.59Mb
Format:PDF
Description:thesis
ViewOpen

The following license files are associated with this item:


Abstract

English

In this thesis we investigate harmonic analysis on a particular class of sub-Riemannian manifold, namely the 2-step stratified Lie groups $\mathbb{G}$, as well as its applications in partial differential equations. This class consists a breadth of interesting geometric objects such as Heisenberg group and H-type Lie group, which can be seen as a meaningful extension of classical theories. After reviewing some main definitions and properties in Chapter 2, we start to study the most important representation of $\mathbb{G}$, the so-called Schr\"{o}dinger representation on $L^2(\mathbb{G})$, and then we prove the Stone-von Neumann theorem for the 2-step stratified Lie groups. In Chapter 3 we also study the Fourier transforms and define the $(\lambda,\nu)$-Wigner and $(\lambda,\nu)$-Weyl transform related to $\mathbb{G}$, we then show some properties of these transforms, which can help us to compute the sub-Laplacian and the $\lambda$-twisted sub-Laplacian. Moreover, in this chapter we demonstrate the beautiful interplay between the representation theory on $\mathbb{G}$ and the classical expansions in terms of Hermite functions and Lagueere functions, As applications, a global calculus of pseudo-differential operator on 2-step stratified Lie groups $\mathbb{G}$ is introduced in the fourth chapter. It relies on the explicit knowledge of the irreducible unitary representations of $\mathbb{G}$, which then allows one to reduce the analysis to study of a rescaled harmonic oscillator on unitary dual $\hat{\mathbb{G}}$. The sub-Laplacian appears as an elliptic operator in this calculus. The explicit formula for the heat kernel of the $\lambda$-twisted sub-Laplacian can be also obtained, which gives a closed formula for the heat kernel of the sub-Laplacian on $\mathbb{G}$.
Keywords: harmonic analysis; nilpotent lie group
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]