Zur Kurzanzeige

Experimental Investigation of Micrometric Droplets and Artificial Particles

dc.contributor.advisorBodenschatz, Eberhard Prof. Dr.
dc.contributor.authorGüttler, Johannes Milan
dc.date.accessioned2022-04-28T12:55:43Z
dc.date.available2022-05-03T00:50:11Z
dc.date.issued2022-04-28
dc.identifier.urihttp://resolver.sub.uni-goettingen.de/purl?ediss-11858/14017
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-9205
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530de
dc.titleExperimental Investigation of Micrometric Droplets and Artificial Particlesde
dc.typedoctoralThesisde
dc.contributor.refereeBodenschatz, Eberhard Prof. Dr.
dc.date.examination2021-07-13de
dc.subject.gokPhysik (PPN621336750)de
dc.description.abstractengClouds and atmospheric particles (e.g. ice crystals, smoke, dust or pollen) heavily influence Earth's energy budget and contribute to the largest uncertainties in climate prediction models. Their treatment involves a huge variety of scales, from sub-micrometer particles that act as cloud condensation nuclei (CCN) to turbulent mixing and entrainment processes, up to coherent atmospheric flows that can span tens to thousands of kilometers. This causes challenges for both simulations and theory as most climate models cannot resolve scale differences on that order. Combining simulations and theory with in situ and laboratory work, however, can enhance our understanding significantly. Different approaches exist, ranging from satellite observations to airborne, ship-based and field-site studies to controlled experiments. In this work, micrometer-sized droplets and particles are created and studied in a laboratory setting. For this, several apparatus and software were designed and tested: 1) A droplet generator able to produce droplets with diameters smaller 100 micron, 2) A settling chamber to study ellipsoidal particles within the intermediate regime 3) Single- and multi-camera tracking codes to determine particle trajectories and orientations for non-spherical particles. Together, these methods compose a first step in determining particle drag, terminal velocities and particle relaxation times for so far unexplored particle shapes and density ratios.de
dc.contributor.coRefereeRein, Martin Apl. Prof. Dr.
dc.contributor.thirdRefereeNiemeyer, Jens Prof. Dr.
dc.contributor.thirdRefereeDillmann, Andreas Prof. Dr. Dr.
dc.contributor.thirdRefereeZwicker, David Dr.
dc.contributor.thirdRefereeParlitz, Ulrich Apl. Prof. Dr.
dc.subject.engatmospherede
dc.subject.engparticlede
dc.subject.engnon-sphericalde
dc.subject.engirregularde
dc.subject.engdensity ratiode
dc.subject.engrelaxation timede
dc.subject.engturbulencede
dc.subject.engdragde
dc.subject.engrotationde
dc.subject.engorientationde
dc.subject.engsettlingde
dc.subject.engterminal velocityde
dc.identifier.urnurn:nbn:de:gbv:7-ediss-14017-2
dc.affiliation.instituteFakultät für Physikde
dc.description.embargoed2022-05-03de
dc.identifier.ppn1800601174


Dateien

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige