dc.contributor.advisor | Zeuch, Thomas Prof. Dr. | |
dc.contributor.author | Becker, Daniel | |
dc.date.accessioned | 2022-11-28T15:55:48Z | |
dc.date.available | 2022-12-05T00:50:09Z | |
dc.date.issued | 2022-11-28 | |
dc.identifier.uri | http://resolver.sub.uni-goettingen.de/purl?ediss-11858/14373 | |
dc.identifier.uri | http://dx.doi.org/10.53846/goediss-9571 | |
dc.format.extent | iv, 172 Seiten | de |
dc.language.iso | deu | de |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.ddc | 540 | de |
dc.title | Aggregations- und Evaporationsdynamik von Clustern und Aerosolpartikeln im H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O-System | de |
dc.type | doctoralThesis | de |
dc.title.translated | Aggregation and Evaporation Dynamics of Clusters and Aerosol Particles in the H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O-System | de |
dc.contributor.referee | Zeuch, Thomas Prof. Dr. | |
dc.date.examination | 2022-06-29 | de |
dc.description.abstracteng | Sulfuric acid and water are two key compounds in the formation of atmospheric aerosols and
are therefore relevant in the context of climate research. In this work, a modified experimental
setup is presented, using the ozonolysis of 2-butene in presence of sulfur dioxide to obtain a
highly supersaturated atmosphere of sulfuric acid vapor. A newly implemented SMPS-system as
well as an optimized sampling procedure allow for real-time monitoring of the resulting particle
formation in the early phase of the experiment. This process is very sensitive with respect to the
initial amount of sulfur dioxide and thus, different scenarios of sulfuric acid driven particle growth can
be prepared and studied. The corresponding experimental time profiles of individual particle
size classes and particle size distributions serve as references for the validation of a kinetic
model, also incorporating predicted cluster decomposition rates based on quantum chemical
calculations. The strong dependence of simulation results on those decomposition rates allows
evaluation of the corresponding predictions. Furthermore, binary systems (e.g. H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O, but
also other additives) are investigated, indicating stabilization of hydrated sulfuric acid clusters.
To study evaporation of pure water clusters, another kinetic model is presented and simulated
cluster distributions are compared to mass spectra of Na-doped water clusters from a molecular
beam experiment. | de |
dc.contributor.coReferee | Vana, Philipp Prof. Dr. | |
dc.subject.eng | sulfuric acid clusters | de |
dc.subject.eng | water clusters | de |
dc.subject.eng | cluster evaporation | de |
dc.subject.eng | new particle formation | de |
dc.subject.eng | butene ozonolysis | de |
dc.subject.eng | kinetic modeling | de |
dc.identifier.urn | urn:nbn:de:gbv:7-ediss-14373-8 | |
dc.affiliation.institute | Fakultät für Chemie | de |
dc.subject.gokfull | Chemie (PPN62138352X) | de |
dc.description.embargoed | 2022-12-05 | de |
dc.identifier.ppn | 1826746196 | |
dc.notes.confirmationsent | Confirmation sent 2022-11-29T06:15:02 | de |