• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Chemie (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Chemie (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Fragment-Based Construction of a Neural Network Potential for Metal-Organic Frameworks

by Marius Herbold
Doctoral thesis
Date of Examination:2022-09-19
Date of issue:2023-02-24
Advisor:Dr. Jörg, Behler
Referee:Dr. Jörg, Behler
Referee:Dr. Ricardo, Mata
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-9735

 

 

Files in this item

Name:MH_Thesis_finished_2022-08-07_NO-CV.pdf
Size:49.3Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

In recent years, many types of machine learning potentials (MLPs) have been developed, which are used to represent the high-dimensional potential-energy surface (PES) of a chemical system with similar accuracy as electronic structure methods. Commonly used MLPs rely on atomic energy contributions dependent on the local chemical environments. Frequently, in addition to the total energies, also atomic forces are used to construct the potentials, as these provide detailed local information about the PES. Since many systems are too large for electronic structure calculations, the MLP training is based on smaller subsystems like molecular fragments or clusters, providing reliable reference forces. Additionally this procedure can substantially simplify the construction of the training sets. In this work, a well-defined method is proposed to determine structurally converged molecular fragments providing reliable training forces for high-dimensional neural network potentials (HDNNPs) based on the analysis of the Hessian. The Hessian permits the investigation of the atomic force dependency on the local environment and thus, the method serves as a locality test and allows to estimate the importance of long-range interactions. The procedure is illustrated for a series of simple, quasi-one-dimensional molecular model systems and the metal-organic frameworks IRMOF-1 (commonly known as MOF-5), -10 and-16 as examples for complex organic-inorganic hybrid materials. A fragment radius is dervied to construct size-converged molecular fragments as the foundation of a HDNNP data set. In the formalism of the HDNNP, the atomic force components depend on twice the cutoff radius compared to the atomic energy contributions. Because of this relation another set of size-reduced molecular fragment is derived to construct another HDNNP data set. Both data sets can be represented with similar accuracy. The validation of the resulting HDNNPs illustrates the equivalence of the predictions. Consequently, very efficient small molecular fragments are proposed for the construction of HDNNP data set.
Keywords: High-Dimensional Neural Network Potential; HDNNP; IRMOF; Metal-Organic-Framework; MOF; Fragment-Based; iso-reticular; Hessian-Based Assessment; Cutoff Radius; Atomic Force Convergence
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]