• Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
Dokumentanzeige 
  •   Startseite
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Chemie (inkl. GAUSS)
  • Dokumentanzeige
  •   Startseite
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Chemie (inkl. GAUSS)
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Fragment-Based Construction of a Neural Network Potential for Metal-Organic Frameworks

von Marius Herbold
Dissertation
Datum der mündl. Prüfung:2022-09-19
Erschienen:2023-02-24
Betreuer:Dr. Jörg, Behler
Gutachter:Dr. Jörg, Behler
Gutachter:Dr. Ricardo, Mata
crossref-logoZum Verlinken/Zitieren: http://dx.doi.org/10.53846/goediss-9735

 

 

Dateien

Name:MH_Thesis_finished_2022-08-07_NO-CV.pdf
Size:49.3Mb
Format:PDF
ViewOpen

Lizenzbestimmungen:


Zusammenfassung

Englisch

In recent years, many types of machine learning potentials (MLPs) have been developed, which are used to represent the high-dimensional potential-energy surface (PES) of a chemical system with similar accuracy as electronic structure methods. Commonly used MLPs rely on atomic energy contributions dependent on the local chemical environments. Frequently, in addition to the total energies, also atomic forces are used to construct the potentials, as these provide detailed local information about the PES. Since many systems are too large for electronic structure calculations, the MLP training is based on smaller subsystems like molecular fragments or clusters, providing reliable reference forces. Additionally this procedure can substantially simplify the construction of the training sets. In this work, a well-defined method is proposed to determine structurally converged molecular fragments providing reliable training forces for high-dimensional neural network potentials (HDNNPs) based on the analysis of the Hessian. The Hessian permits the investigation of the atomic force dependency on the local environment and thus, the method serves as a locality test and allows to estimate the importance of long-range interactions. The procedure is illustrated for a series of simple, quasi-one-dimensional molecular model systems and the metal-organic frameworks IRMOF-1 (commonly known as MOF-5), -10 and-16 as examples for complex organic-inorganic hybrid materials. A fragment radius is dervied to construct size-converged molecular fragments as the foundation of a HDNNP data set. In the formalism of the HDNNP, the atomic force components depend on twice the cutoff radius compared to the atomic energy contributions. Because of this relation another set of size-reduced molecular fragment is derived to construct another HDNNP data set. Both data sets can be represented with similar accuracy. The validation of the resulting HDNNPs illustrates the equivalence of the predictions. Consequently, very efficient small molecular fragments are proposed for the construction of HDNNP data set.
Keywords: High-Dimensional Neural Network Potential; HDNNP; IRMOF; Metal-Organic-Framework; MOF; Fragment-Based; iso-reticular; Hessian-Based Assessment; Cutoff Radius; Atomic Force Convergence
 

Statistik

Hier veröffentlichen

Blättern

Im gesamten BestandFakultäten & ProgrammeErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTypIn dieser FakultätErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTyp

Hilfe & Info

Publizieren auf eDissPDF erstellenVertragsbedingungenHäufige Fragen

Kontakt | Impressum | Cookie-Einwilligung | Datenschutzerklärung
eDiss - SUB Göttingen (Zentralbibliothek)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
ediss_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]
Niedersächsische Staats- und Universitätsbibliothek | Georg-August Universität
Bereichsbibliothek Medizin (Nur für Promovierende der Medizinischen Fakultät)
Robert-Koch-Str. 40
Mon – Fr 8:00 – 24:00 h
Sa – So 8:00 – 22:00 h
Feiertags 10:00 – 20:00 h
Tel.: +49 551 39-8395 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
bbmed_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]