Show simple item record

Twisted equivariant K-theory and equivariant T-duality

dc.contributor.advisorSchick, Thomas Prof. Dr.
dc.contributor.authorDove, Thomas
dc.date.accessioned2023-09-18T15:16:39Z
dc.date.available2023-09-25T00:50:15Z
dc.date.issued2023-09-18
dc.identifier.urihttp://resolver.sub.uni-goettingen.de/purl?ediss-11858/14882
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-10100
dc.format.extent91de
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510de
dc.titleTwisted equivariant K-theory and equivariant T-dualityde
dc.typedoctoralThesisde
dc.contributor.refereeSchick, Thomas Prof. Dr.
dc.date.examination2023-08-30de
dc.description.abstractengThis thesis is about two things: twisted equivariant K-theory and equivariant topological T-duality. First, we prove a fixed point decomposition theorem for twisted equivariant K-theory, generalising a result of Atiyah and Segal. This is a description of joint work with Thomas Schick and Mario Velásquez. Next, we generalise the Atiyah-Segal completion theorem for families of subgroups to the twisted case. This is an extension of work by Lahtinen, who generalised the original Atiyah-Segal theorem to the twisted case. Thirdly, we explicitly define the pushforward map in twisted equivariant K-theory and apply it to the case of equivariant principal circle bundles.This is an application of techniques that are well-known to non-commutative geometers but have not gained widespread attention among topologists. In the second half of the thesis, we formulate equivariant topological T-duality and prove that the T-duality transformation in twisted equivariant K-theory is an isomorphism for all compact Lie groups.de
dc.contributor.coRefereeMeyer, Ralf Prof. Dr.
dc.subject.engAlgebraic Topologyde
dc.subject.engK-Theoryde
dc.subject.engT-Dualityde
dc.subject.engPrincipal Bundlesde
dc.identifier.urnurn:nbn:de:gbv:7-ediss-14882-5
dc.affiliation.instituteFakultät für Mathematik und Informatikde
dc.subject.gokfullMathematics (PPN61756535X)de
dc.description.embargoed2023-09-25de
dc.identifier.ppn1860027024
dc.notes.confirmationsentConfirmation sent 2023-09-18T19:45:01de


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record