dc.contributor.advisor | Schick, Thomas Prof. Dr. | |
dc.contributor.author | Dove, Thomas | |
dc.date.accessioned | 2023-09-18T15:16:39Z | |
dc.date.available | 2023-09-25T00:50:15Z | |
dc.date.issued | 2023-09-18 | |
dc.identifier.uri | http://resolver.sub.uni-goettingen.de/purl?ediss-11858/14882 | |
dc.identifier.uri | http://dx.doi.org/10.53846/goediss-10100 | |
dc.format.extent | 91 | de |
dc.language.iso | eng | de |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 510 | de |
dc.title | Twisted equivariant K-theory and equivariant T-duality | de |
dc.type | doctoralThesis | de |
dc.contributor.referee | Schick, Thomas Prof. Dr. | |
dc.date.examination | 2023-08-30 | de |
dc.description.abstracteng | This thesis is about two things: twisted equivariant K-theory and equivariant topological T-duality. First, we prove a fixed point decomposition theorem for twisted equivariant K-theory, generalising a result of Atiyah and Segal. This is a description of joint work with Thomas Schick and Mario Velásquez. Next, we generalise the Atiyah-Segal completion theorem for families of subgroups to the twisted case. This is an extension of work by Lahtinen, who generalised the original Atiyah-Segal theorem to the twisted case. Thirdly, we explicitly define the pushforward map in twisted equivariant K-theory and apply it to the case of equivariant principal circle bundles.This is an application of techniques that are well-known to non-commutative geometers but have not gained widespread attention among topologists. In the second half of the thesis, we formulate equivariant topological T-duality and prove that the T-duality transformation in twisted equivariant K-theory is an isomorphism for all compact Lie groups. | de |
dc.contributor.coReferee | Meyer, Ralf Prof. Dr. | |
dc.subject.eng | Algebraic Topology | de |
dc.subject.eng | K-Theory | de |
dc.subject.eng | T-Duality | de |
dc.subject.eng | Principal Bundles | de |
dc.identifier.urn | urn:nbn:de:gbv:7-ediss-14882-5 | |
dc.affiliation.institute | Fakultät für Mathematik und Informatik | de |
dc.subject.gokfull | Mathematics (PPN61756535X) | de |
dc.description.embargoed | 2023-09-25 | de |
dc.identifier.ppn | 1860027024 | |
dc.notes.confirmationsent | Confirmation sent 2023-09-18T19:45:01 | de |