Show simple item record

The Spectra on Lie Groups and Its Application to twisted L2-Invariants

dc.contributor.advisorSchick, Thomas Prof. Dr.
dc.contributor.authorHan, Zhicheng
dc.date.accessioned2024-02-29T18:49:11Z
dc.date.available2024-03-07T00:50:10Z
dc.date.issued2024-02-29
dc.identifier.urihttp://resolver.sub.uni-goettingen.de/purl?ediss-11858/15148
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-10360
dc.format.extent119de
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510de
dc.titleThe Spectra on Lie Groups and Its Application to twisted L2-Invariantsde
dc.typedoctoralThesisde
dc.contributor.refereeSchick, Thomas Prof. Dr.
dc.date.examination2023-09-14de
dc.description.abstractengWe computed spectra of various $G$-invariant differential operators on the universal cover of 2x2 unimodular groups. This was achieved by applying tools from harmonic analysis/representation theory to corresponding groups. In this thesis we have discussed in detail how to apply harmonic analysis to study such problems, this include in particular a detailed analysis of the operator in question, a estimate of the growth of its kernel, and later the computation of the spectra for several operators. Towards the second half we applied the data to compute the Novikov-Shubin invariants on respective group, which is a topological invariant defined to measure the heat decay at large time.de
dc.contributor.coRefereeMeyer, Ralf Prof. Dr.
dc.subject.engL2-invariantsde
dc.subject.engNovikov-Shubin invariantsde
dc.subject.engLie groupsde
dc.subject.engHarmonic analysisde
dc.identifier.urnurn:nbn:de:gbv:7-ediss-15148-4
dc.affiliation.instituteFakultät für Mathematik und Informatikde
dc.subject.gokfullMathematics (PPN61756535X)de
dc.description.embargoed2024-03-07de
dc.identifier.ppn1882283228
dc.notes.confirmationsentConfirmation sent 2024-02-29T19:45:01de


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record