Zur Kurzanzeige

Interconnection of a Forest Growth Model and a Structural Model for Young Poplar Trees (Populus spp.)

dc.contributor.advisorKurth, Winfried Prof. Dr.
dc.contributor.authorStiehm, Christoph
dc.date.accessioned2020-03-20T11:49:07Z
dc.date.available2020-03-20T11:49:07Z
dc.date.issued2020-03-20
dc.identifier.urihttp://hdl.handle.net/21.11130/00-1735-0000-0005-1364-5
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-7775
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-7775
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc634de
dc.titleInterconnection of a Forest Growth Model and a Structural Model for Young Poplar Trees (Populus spp.)de
dc.typedoctoralThesisde
dc.contributor.refereeNagel, Jürgen Prof. Dr.
dc.date.examination2019-09-27
dc.description.abstractgerBeim Anbau von schnellwachsenden Baumarten wie Pappel und Weide auf landwirtschaftlichen Flächen in Kurzumtriebsplantagen stellt die Standortwahl und die daran gebundene Ertragsprognose eine zentrale Entscheidung für den Bewirtschafter dar. In Verbindung mit dem Sortenaspekt besteht hier Forschungsbedarf zur Wechselwirkung von Standort und Genotyp hinsichtlich der Wuchsleistung. Ziel dieser Arbeit ist es, diese Fragestellungen auf mehreren Ebenen zu betrachten. Dazu wurde ein Multiskalen-Ansatz gewählt, in dessen Rahmen zwei Modellkomplexe entwickelt werden, um sie anschließend durch eine Schnittstelle zu verbinden. Der erste Komplex sieht dabei die Implementierung eines Ertragssimulators vor, der das einzelbaumbasierte Wachstum und die Mortalität in Abhängigkeit von Konkurrenz und Standortbedingungen abbildet. Die Datengrundlage hierfür stellen Zuwachsdaten aus dem vom BMEL geförderten ProLoc Verbundvorhaben dar. Dazu wird auf 18 Versuchsflächen zurückgegriffen, die auf einer breiten Amplitude standörtlicher Eigenschaften angelegt wurden. Nach einem einheitlichem Versuchsdesign wurden monoklonale Versuchsparzellen mit drei Pappel- und zwei Weidenklonen (interspezifisch gekreuzte Hybride) in zwei je dreijährigen Rotationen versuchstechnisch betreut und nach dem dritten Jahr auf den Stock gesetzt. Basierend auf der Vorlage des Waldwachstumssimulators BWINPro und der zugehörigen Programmbibliothek TreeGross werden mehrere Modelle parametrisiert, die neben den Überlebensraten nach der Pflanzung und dem Rückschnitt die Höhenzuwächse in der ersten und zweiten Rotation schätzen. Mit dem distanzunabhängigen Konkurrenzparameter “basal area of larger trees'' kann die Entwicklung innerhalb der Bestände abgebildet werden. Hinsichtlich der Wuchsleistung auf Standortebene stellen sich im Zuge der Variablenselektion die Parameter Pflanzdatum, nutzbare Feldkapazität, Bodenzahl, Niederschlagssumme im Mai und Juni und Mitteltemperatur im Juni und Juli als entscheidend heraus. Zur Schätzung des Höhenzuwachses und der Überlebensrate nach Rückschnitt wird die Baumhöhe vor der Ernte als unabhängige Variable genutzt. Der Faktor Klon deutet innerhalb der Modelle zwar auf Unterschiede in den Wachstumsvorgängen hin, Wechselwirkungen mit Standortvariablen können jedoch nicht festgestellt werden. Fehlende Variablen wie der durchschnittliche Gesamtzuwachs des Ertrags der Trockenmasse in t_atro ha^-1 a^-1 werden über zusätzliche am Datensatz parametrisierte Funktionen geschätzt. Die Einzelmodelle werden zu einem Simulationsablauf verbunden und die Gesamtschätzgüte überprüft. In der ersten Rotation können gute Ergebnisse erzielt werden mit quadrierten Korrelationen der beobachteten und geschätzten Bestandesmittelhöhen von 0.79. In der zweiten Rotation nimmt die Schätzgüte jedoch auf 0.53 ab. Es finden sich vereinzelte Standorte mit starken Abweichungen, als problematisch werden die Tiefe der Bodenbeprobung und fehlende erweiterte Informationen über den Wasserhaushalt vermutet. Der zweite Modellkomplex beinhaltet ein Strukturmodell, für das sich auf die Pappel-Genotpyen und die zweite Rotation beschränkt wird. Zunächst wurden mehrere Messmethoden identifiziert, die geeignet sind, die Baumarchitektur in Form von Geometrie und Topologie der oberirdischen holzigen Biomasse sowie die Morphologie der Belaubung hinsichtlich der Blattarchitektur und Blattform zu bestimmen. Für die Verzweigungsarchitektur wurden ein manuelles Verfahren und ein semi-automatisches Verfahren mit einem elektromagnetischen Digitizer zur Bestimmung der Astkrümmung gewählt und angewandt. Die Blattarchitektur wurde mit einem manuellen Verfahren gemessen. Die Blattform konnte per Digitalisierung von eingesammelten Blättern bestimmt werden. Im Zuge der Analyse der gewonnenen Daten werden mehrere Modelle parametrisiert. Hierdurch können für Apikal- und Lateralknospen die Austriebswahrscheinlichkeiten sowie die Dimension und Orientierung im Raum von sich bildenden Trieben geschätzt werden. Innerhalb der Modelle wird nach Haupt- und Nebenstämmen, Verlängerungs- und Seitentrieben, Lang- und Kurztrieben und innerhalb der Seitentriebe nach sylleptischen sowie regulären Trieben differenziert. Der Ausgangspunkt ist hier die Schätzung die Internodienanzahl je Trieb, die über die Trieblänge wiederum andere Parameter wie den Verzweigungswinkel und die Krümmung beeinflusst. Weitere Faktoren, die mehreren Modellen zugrunde liegen, sind das Alter und die Verzweigungsordnung sowie der genotypische Einfluss. Parameter wie die Belaubung und die Blattgröße lassen sich mitunter durch die relative Höhe am Baum schätzen. Die Blattform wiederum wird durch Konturpunkte bestimmt, deren Koordinaten in Abhängigkeit von der Blattlänge berechnet werden. Im Rahmen der Analyse dieser Modelle stellen sich geringe Unterschiede in der Struktur zwischen den Klonen heraus. Ausnahmen stellen die Krümmung und Verzweigungswinkel der Seitentriebe für einen der Klone dar, bei dem die Modelle den beobachtbaren schlankeren Habitus gut reproduzieren. Deutliche Unterschiede ergeben sich auch bei den Blattformen, die die Blattformen der zugrundeliegenden Elternspezies der Hybride wiedergeben. Die einzelnen Modellfunktionen werden anschließend als Gesamt-Strukturmodell in der Modellplattform GroIMP implementiert. Das erhaltene Modell kann in Jahresschritten die Entwicklung der Baumstruktur für jeden der drei Klone abbilden. Wahlweise können beliebig große Bestände simuliert werden, die durch stochastische Komponenten im Modell über eine realitätsnahe Variabilität der Baumgrößen verfügen. Die Verbindung der beiden Modellkomplexe wird durch eine Schnittstelle realisiert, die den Import von Einzelbaumdaten aus dem Ertragsmodell in das Strukturmodell vorsieht. Zwei weitere Modelle werden parametrisiert, um für das Strukturmodell die Internodienanzahl aus der Trieblänge als jährliche Höhenzuwächse des Ertragsmodells ermitteln zu können und das Wachstum der Nebenstämme an den Hauptstamm anzupassen. Darüber hinaus können die vom Ertragssimulator erzeugten Ausfälle in den Beständen berücksichtigt werden. Zukünftige Forschungsarbeiten werden zeigen, inwiefern das hier entwickelte Ertragsmodell durch eine Validierung mit Daten aus anderen Versuchen weiterentwickelt werden kann, um auch tiefere Bodenschichten mit einzubeziehen. Das Strukturmodell könnte durch Einbau eines Physiologiemoduls zu einem vollständigen Funktions-Struktur-Pflanzenmodell ausgebaut werden. Durch die Erweiterung der Schnittstelle zur Rückgabe von Daten vom Strukturmodell zum Ertragsmodell wäre auch eine Verbesserung der Schätzgüte z.B. durch erweiterte Möglichkeiten zur Modellierung der Konkurrenzverhältnisse vorstellbar.de
dc.description.abstractengWhen planting fast-growing tree species such as poplars and willows on agricultural land in short rotation coppice plantations, site selection and the associated yield potential pose a central decision for the practitioner. In connection with the cultivar aspect there has been a need for research on the interaction between site and genotype in terms of growth performance. The aim of this work is to examine these questions on several levels. For this purpose, a multi-scale approach was chosen in the framework of which two model complexes are developed which are then connected by an interface. The first model complex incorporates the implementation of a yield simulator which depicts single tree based growth and mortality as a function of competition and site conditions. The data basis for this is growth data from the joint research project ProLoc funded by the BMEL. For this purpose, 18 trial sites are chosen which were initiated on a broad amplitude of environmental conditions. Following a uniform experimental design, monoclonal trial plots with three poplar and two willow clones (interspecific crossed hybrids) were supervised in two tri-annual rotations and cut back after the third year. Based on the model of the forest growth simulator BWINPro and the associated TreeGross program library, several models are parameterized which, in addition to the survival rates after planting and harvest, estimate the height increment in the first and second rotation. With the distance-independent competition index ``basal area of larger trees'' the development within the stands can be predicted. Regarding the growth performance on the site level, the parameters of planting date, available water capacity, German agricultural soil quality rating, sum of precipitation in May and June and mean temperature in June and July are identified as influential by variable selection. To estimate the height increment and survival after pruning, tree height before harvest is regarded as an independent variable. The factor clone indicates differences in the growth processes within the models but interactions with site variables can not be determined as significant. Missing variables such as the mean annual increment in dry matter yield in oven-dry tons ha^-1 a^-1 are estimated by additional functions parameterized with the dataset. The individual models are connected to a simulation procedure and the overall predictive power is assessed. Good results can be achieved for the first rotation with squared correlations of the observed and estimated mean stand height of 0.79. However, in the second rotation the estimation quality decreases to 0.53. There are single sites with considerable deviations. The depth of the soil sampling and missing extended information on the water supply are suspected as problematic here. The second model complex includes a structural model focused on the poplar genotypes and the second rotation. First, several measuring methods were identified which are deemed suitable for determining the tree architecture in terms of geometry and topology of the above-ground woody biomass, as well as the morphology of foliage in terms of leaf architecture and leaf shape. For the branch architecture, a manual method and a semi-automatic method with an electromagnetic digitizer for determining branch curvature have been selected and employed. The leaf architecture was measured by a manual method. The leaf shape could be determined by digitizing collected leaves. After analyzing the obtained data, several models are parameterized. As a result, the probability of bud growth and the dimensions and orientation in space of developing shoots can be estimated for apical and lateral buds. The models differentiate between main and minor stems, prolongation and lateral shoots, long and short shoots and, within the lateral shoots, sylleptic and regular shoots. The starting point here is the estimation of the number of internodes per shoot which in turn influences other parameters such as the branch angle and the curvature through the shoot length. Other factors underlying several models are the age, branch order and the genotypic influence. Parameters such as foliage and leaf size can mainly be estimated by the relative height with regard to the absolute tree height. The leaf shape in turn is determined by contour points whose coordinates are calculated as a function of the leaf blade length. As part of the analysis of these models, only slight differences in the structure between the clones are found. Exceptions are the curvature and branching angles of the lateral shoots for one of the clones, for which the models reproduce the observable slender habitus. Significant differences also occur in the leaf shape which reflect the leaf shapes of the underlying parent species of the hybrids. The individual model functions are then implemented into a structural model in the model platform GroIMP. The resulting model can simulate the development of the tree structure for each of the three clones in annual steps. Arbitrarily large stands can be simulated that have realistically varying tree sizes through stochastic components in the model. The interconnection of the two model complexes is realized through the import of single tree data from the yield model into the structural model. Two further models are parameterized to determine the number of internodes from the shoot length as annual height increment of the yield model for the structural model and to modify the growth of the minor stems in dependence of the main stem growth. Additionally, the single tree mortality generated by the yield simulator is incorporated into the structural model. Further research will show whether it is possible to improve the yield model by validation with data from other experiments to include deeper soil layers here. The structural model could be extended to a complete functional structural plant model by incorporating a physiology module. By extending the interconnection to return data from the structural model to the yield model, the predictive power could be improved, for example by means of extended possibilities for modeling the within-stand competition dynamics.de
dc.contributor.coRefereeAmmer, Christian Prof. Dr.
dc.subject.engPopulusde
dc.subject.engPoplarde
dc.subject.engShort Rotation Coppicede
dc.subject.engForest Growth Modelde
dc.subject.engYield Modelde
dc.subject.engStructural Plant Modelde
dc.subject.engTree Architecturede
dc.subject.engModel Interconnectionde
dc.subject.engBranch Architecturede
dc.subject.engLeaf Morphologyde
dc.subject.engGroIMPde
dc.subject.engBWinProde
dc.subject.engMulti-Scale Approachde
dc.identifier.urnurn:nbn:de:gbv:7-21.11130/00-1735-0000-0005-1364-5-4
dc.affiliation.instituteFakultät für Forstwissenschaften und Waldökologiede
dc.subject.gokfullForstwirtschaft (PPN621305413)de
dc.identifier.ppn1693110512


Dateien

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige