• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convergence rates for variational regularization of inverse problems in exponential families

by Simayi Yusufu
Doctoral thesis
Date of Examination:2019-09-12
Date of issue:2020-07-16
Advisor:Prof. Dr. Thorsten Hohage
Referee:Prof. Dr. Thorsten Hohage
Referee:Prof. Dr. Axel Munk
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-8090

 

 

Files in this item

Name:main.pdf
Size:1.02Mb
Format:PDF
Description:Dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

We consider statistical inverse problems with statistical noise. By using regularization methods one can approximate the true solution of the inverse problem by a regularized solution. The previous investigation of convergence rates for variational regularization with Poisson and empirical process data is shown to be suboptimal. In this thesis we obtain improved convergence rates for variational regularization methods of nonlinear ill-posed inverse problems with certain stochastic noise models described by exponential families and derive better reconstruction error bounds by applying deviation inequalities for stochastic process in some function spaces. Furthermore, we also consider iteratively regularized Newton-method as an alternative while the operator is non-linear. Due to the difficulty of deriving suitable deviation inequalities for stochastic processes in some function spaces, we are currently not able to obtain optimal convergence rates for variational regularization such that we state our desired result as a conjecture. If our conjecture holds true, then we can immediately obtain our desired results.
Keywords: Convergence rates; Variational regularization; Empirical process data; Poisson data; Gaussian white noise; Iteratively regularized Newton-type method; Inverse problems
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]