Navigation ▼

Zur Kurzanzeige

dc.contributor.advisor Suhm, Martin A. Prof. Dr.
dc.contributor.author Medel, Robert
dc.date.accessioned 2020-10-20T14:34:23Z
dc.date.available 2020-10-20T14:34:23Z
dc.date.issued 2020-10-20
dc.identifier.uri http://hdl.handle.net/21.11130/00-1735-0000-0005-14BC-1
dc.language.iso deu de
dc.publisher Niedersächsische Staats- und Universitätsbibliothek Göttingen de
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc 540 de
dc.title Schwingungsspektroskopische Untersuchungen zur Chiralitätserkennung und Torsionsdynamik bei Alkoholen de
dc.type doctoralThesis de
dc.title.translated Investigation of Chirality Recognition and Torsional Dynamics in Alcohols by Vibrational Spectroscopy de
dc.contributor.referee Suhm, Martin A. Prof. Dr.
dc.date.examination 2020-06-09
dc.description.abstracteng In this thesis different implications of molecular chirality are explored by experimental and quantum chemical methods. Discriminating interactions between molecules of different handedness, termed chirality recognition, are one consequence of chirality. Another one is conformational variety in alcohols due to the accompanying low symmetry. In this context special attention is given to conformational interconversion, including quantum tunneling. To facilitate the comparison with theory, molecular systems are studied in an isolated and cooled condition in supersonic jet expansions. Experimental challenges arise because appropriate model systems, such as alcohol clusters, often feature constituents of low volatility. Strategies to optimize existing techniques and to explore new approaches are therefore another topic of this thesis. OH stretching vibrations are probed by linear FTIR and Raman spectroscopy. Among others, investigated molecular systems include a multitude of monomeric alcohols, clusters of methanol and ethanol up to the hexamer, dimers of benzyl alcohol and 1-phenylethanol as well as mixed dimers of alpha-pinene with different chiral alcohols. Semi-empirical models to predict experimental OH stretching wavenumbers and tunneling splittings of monomeric alcohols are presented. A more extensive summary of the results and a complete overview of investigated systems is available on pages V to IX. de
dc.contributor.coReferee Mata, Ricardo A. Prof. Dr.
dc.contributor.thirdReferee Koszinowski, Konrad Prof. Dr.
dc.contributor.thirdReferee Kruss, Sebastian Dr.
dc.contributor.thirdReferee Bünermann, Oliver Dr.
dc.contributor.thirdReferee Schäfer, Tim Dr.
dc.subject.eng chirality recognition de
dc.subject.eng molecular clusters de
dc.subject.eng hydrogen bonding de
dc.subject.eng quantum chemistry de
dc.subject.eng benchmarking de
dc.subject.eng supersonic jet expansion de
dc.subject.eng tunneling splitting de
dc.subject.eng vibrational spectroscopy de
dc.subject.eng FTIR de
dc.subject.eng Raman de
dc.subject.eng alcohol de
dc.identifier.urn urn:nbn:de:gbv:7-21.11130/00-1735-0000-0005-14BC-1-1
dc.affiliation.institute Fakultät für Chemie de
dc.subject.gokfull Chemie  (PPN62138352X) de
dc.identifier.ppn 1736064908

Dateien

Das Dokument erscheint in:

Zur Kurzanzeige