• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Item View
  •   Home
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Auditory associative learning and its neural correlates in the auditory midbrain

by Chi Chen
Doctoral thesis
Date of Examination:2019-01-21
Date of issue:2021-01-08
Advisor:Dr. Robert Gütig
Referee:Prof. Dr. Tim Gollisch
Referee:Prof. Dr. Alexander Gail
Referee:Dr. Livia de Hoz
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-8393

 

 

Files in this item

Name:THESIS_CHI_CHEN_publication_final_noCV.pdf
Size:4.58Mb
Format:PDF
Description:PhD Thesis by Chi Chen
ViewOpen

The following license files are associated with this item:


Abstract

English

Interpreting the meaning of environmental stimuli to generate optimal behavioral responses is essential for survival. Simply sensing a sound, without accessing prior knowledge in the brain, will not benefit behavior. How sensation and memory interact to form behavior is one of the fundamental questions in the field of neuroscience. In this thesis, I have addressed this question from two perspectives: I investigated the behavioral outcome of this interaction using discrimination, and the circuit underlying this interaction using electrophysiological recordings in the behaving mouse. Behaviorally, we found that the physical difference between to-be-discriminated sounds, had a constraining effect on discrimination. This effect occurred even though physical differences were significantly larger than reported discrimination limens, thus reflecting a high overlap between the memory traces of the relevant stimuli. The results suggest a strong role of pre-wired tonotopic organization and the involvement of peripheral stations with wider tuning (Ehret and Merzenich, 1985; Taberner and Liberman, 2005). To further understand the influence of sensation on behavior, we tested the interaction between sound features with generalization. Using sounds that differed in two dimensions, we found that bi-dimensional generalization can be either biased towards a single dimension or an integration of both. Whether it was one or the other depended on the two dimensions used. As the first convergence station in the auditory system (Casseday et al., 2002), the role of the inferior colliculus in encoding behavioral relevant information is not well understood. Recording from freely behaving mouse, we found task engagement modulated neural activity in the IC in a stimulus-specific manner. Our lab found previously that relevant sound exposure induced enhancement in neural activity and shifts in tonal representation in the IC (Cruces-Solís et al., 2018). As a continuation, we found that movement-sound association is essential for this plasticity. Furthermore, recording in freely behaving mice also found that this association modulated the ongoing LFP in the IC, suggesting a new role of IC in filtering movement-related acoustic stimuli. To conclude, our results support the view that the IC is not simply an auditory structure that relays auditory information into the cortex, but plays important role in interpreting the meaning of the sound. The new role of IC in encoding movement-related information suggests that the filtering function of the auditory system starts already in subcortical stages of the auditory pathway.
Keywords: animal behaviour; perception; auditory system; generalization; sensory processing; the Inferior Colliculus; subcortical
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]