• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two Cases of Artin's Conjecture

by Miriam Sophie Kaesberg
Doctoral thesis
Date of Examination:2020-12-18
Date of issue:2021-02-25
Advisor:Prof. Dr. Jörg Brüdern
Referee:Prof. Dr. Jörg Brüdern
Referee:Prof. Dr. Preda Mihailescu
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-8462

 

 

Files in this item

Name:Two_Cases_of_Artin's_Conjecture.pdf
Size:850.Kb
Format:PDF
Description:Dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

Let $f_1, \dots, f_R$ be forms of degree $k_1, \dots, k_R$ in $s$ variables. A generalised version of a conjecture by Artin states that the equations $f_1= \dots=f_R=0$ have a non-trivial $p$-adic solution for all primes $p$ provided that $s > k_1^2 + \dots + k_R^2$. This thesis proves Artin's conjecture for two diagonal forms of degree $k$ for odd primes $p$. Furthermore, it improves on this bound in the case of one diagonal cubic form and one linear form by showing that $s \ge 8$ variables are sufficient to ensure a non-trivial $p$-adic solution for all primes instead of the predicted $s \ge 11$ variables.
Keywords: $p$-adic solutions; Artin's conjecture; Diagonal forms; Additive forms; Pairs of forms; Cubic forms; Solutions in $\mathbb{Q}_p$; Analytic number theory; Diophantine equations in many variables; Congruences in many variables
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]