Zur Kurzanzeige

Ab initio molecular dynamics simulations of molecular scattering from metal(111) surfaces

dc.contributor.advisorWodtke, Alec M. Prof. Dr.
dc.contributor.authorAltschäffel, Jan
dc.date.accessioned2021-08-26T09:47:12Z
dc.date.available2021-09-01T00:50:03Z
dc.date.issued2021-08-26
dc.identifier.urihttp://hdl.handle.net/21.11130/00-1735-0000-0008-58F1-5
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-8797
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-8797
dc.language.isoengde
dc.publisherNiedersächsische Staats- und Universitätsbibliothek Göttingende
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540de
dc.titleAb initio molecular dynamics simulations of molecular scattering from metal(111) surfacesde
dc.typedoctoralThesisde
dc.contributor.refereeWodtke, Alec M. Prof. Dr.
dc.date.examination2021-05-27
dc.description.abstractengIn this thesis, I report on ab initio molecular dynamics (AIMD) simulations of scattering experiments of CO and NO from Au(111) and Ag(111) surfaces and provide minimum energy pathway (MEP) calculations of the dissociation reactions of hydrogen halides and NO on different metal(111) surfaces. Furthermore, I did calculations of the transition dipole moment to investigate the electronic interaction of CO on different surfaces and calculated the electronic ground state energy for CO at different surfaces and NO/Au(111). Finally, I computed the phonon spectra of (Ag-covered) Au(111) and Ag(111) surfaces to look into their mechanical properties, because they can influence the scattering behavior. A comparison between experimental results and the adiabatic simulations for CO in low vibrational states shows a nearly quantitative agreement, and thus non-adiabatic effects, like electron-hole pair (ehp) excitation, can be neglected. The disagreement between the adiabatic simulations and the experiment suggests a more dominant role of non-adiabatic effects in the scattering dynamics of highly vibrationally excited NO and CO from metal surfaces. The computed phonon spectra for Au(111), Ag(111) and Ag-covered Au(111) surfaces suggest a purely mechanical energy transfer for the translational energy of CO(v=2) to the surface phonons which is in agreement with the results of the computed AIMD simulations. The transition state (TS) configurations for all dissociation reactions show an elongated molecular internuclear distance, and therefore we can assume that the dissociation reactions are promoted via vibrational excitation according to Polanyi’s rules. The obtained density functional theory (DFT) data for NO/Au(111) can be fitted to obtain a diabatic potential with a neutral and an anionic state, where NO$^{-}$ is formed to enable molecular dynamics (MD) simulations in the framework of the independent electron surface hopping (IESH) approach.de
dc.contributor.coRefereeSchwarzer, Dirk Prof. Dr.
dc.subject.engPhonon spectrade
dc.subject.engtransition dipole momentde
dc.subject.engsimulation of scattering experimentsde
dc.subject.engAb initio molecular dynamicsde
dc.subject.engmetal surfacesde
dc.subject.engnon-adiabatic effectsde
dc.subject.engdiatomic molecule surface interactionde
dc.subject.engDensity functional theoryde
dc.subject.engminimum energy pathwaysde
dc.subject.engenergy conversionde
dc.subject.engBorn-Oppenheimer breakdownde
dc.identifier.urnurn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-58F1-5-3
dc.affiliation.instituteFakultät für Chemiede
dc.subject.gokfullChemie  (PPN62138352X)de
dc.description.embargoed2021-09-01
dc.identifier.ppn1767955197


Dateien

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige