Show simple item record

Nocommutative structures inquantum field theory

dc.contributor.advisorBahns, Dorothea Prof. Dr.
dc.contributor.authorPeksova, Lada
dc.date.accessioned2021-10-19T12:27:40Z
dc.date.available2021-10-19T12:27:40Z
dc.date.issued2021-10-19
dc.identifier.urihttp://hdl.handle.net/21.11130/00-1735-0000-0008-594A-2
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-8886
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc510de
dc.titleNocommutative structures inquantum field theoryde
dc.typedoctoralThesisde
dc.contributor.refereeSachs, Ivo Prof. Dr.
dc.date.examination2020-10-22
dc.description.abstractengIn this thesis, structures defined via modular operads and properads are generalized to their non-commutative analogs. We define the connected sum for modular operads. This way we are able to construct the graded commutative product on the algebra over Feynman transform of the modular operad. This forms a Batalin-Vilkovisky algebra with symmetry given by the modular operad. We transfer this structure to the cohomology via the Homological perturbation lemma. In particular, we consider these constructions for Quantum closed and Quantum open modular operad. As a parallel project, we introduce an associative analog of Frobenius properad, called Open Frobenius properad. We construct the cobar complex over it and in the spirit of Barannikov, we interpret algebras over the cobar complex as homological differential operators. Furthermore, we present the IBA∞-algebras as an analog of well-known IBL∞-algebras.de
dc.contributor.coRefereeGolovko, Roman Dr.
dc.subject.engmodular operads, properads, Batalin-Vilkovisky algebras, Quantum homotopy algebras, IBL∞ and IBA∞ algebrasde
dc.identifier.urnurn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-594A-2-3
dc.affiliation.instituteFakultät für Mathematik und Informatikde
dc.subject.gokfullMathematics (PPN61756535X)de
dc.identifier.ppn1774528975


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record