• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Medizin
  • Human- und Zahnmedizin
  • Item View
  •   Home
  • Medizin
  • Human- und Zahnmedizin
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Der positiv inotrope Effekt von Insulin am menschlichen Myokard

The positive inotropic effect of insulin on human myocardium

by Sebastian Martin Albert Kania
Doctoral thesis
Date of Examination:2016-06-29
Date of issue:2016-06-09
Advisor:Prof. Dr. Rolf Wachter
Referee:Prof. Dr. Wolfram-Hubertus Zimmermann
Referee:PD Dr. Wolfgang Krick
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-5682

 

 

Files in this item

Name:Dissertation mit Bookmarks (aktuell) upload.pdf
Size:862.Kb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

Insulin has been shown to exert positive inotropic effects in several in vitro and in vivo models, but signal transduction and substrate dependency remain unclear. We examined inotropic responses and signal transduction mechanisms of insulin in human myocardium. Experiments were performed in isolated trabeculae from end-stage failing hearts of 58 nondiabetic and 3 diabetic patients undergoing heart transplantation. The effect of insulin (0.3 and 3 IU/L) on isometric twitch force (37 degrees C, 1 Hz) was tested in the presence of glucose or pyruvate as energetic substrate. Furthermore, intracellular Ca2+ transients (aequorin method), sarcoplasmic reticulum (SR) Ca2+ content (rapid cooling contractures), and myofilament Ca2+ sensitivity (semiskinned fibers) were assessed. In addition, potential signaling pathways were tested by blocking glycolysis, PI-3-kinase, protein kinase C, diacylglycerol kinase, insulin-like growth factor-1 receptors, or transsarcolemmal Ca2+ entry via the Na+/Ca2+ exchanger. Insulin exerted concentration-dependent and partially substrate-dependent positive inotropic effects. The phosphatidylinositol-3-kinase inhibitor wortmannin and the Na2+/Ca2+ exchanger reverse-mode inhibitor KB-R7943 completely or partially prevented the functional effects of insulin. In contrast, insulin-like growth factor-1 receptor blockade, protein kinase C inhibition, and diacylglycerol kinase blockade were without effect. The inotropic response was associated with increases in intracellular Ca2+ transients, SR Ca2+ content, and increased myofilament Ca2+ sensitivity.Insulin exerts Ca2+-dependent and -independent positive inotropic effects through a phosphatidylinositol-3-kinase-dependent pathway in failing human myocardium. The increased [Ca2+]i originates at least in part from enhanced reverse-mode Na+/Ca2+ exchange and consequently increased SR-Ca2+ load. These nongenomic functional effects of insulin may be of clinical relevance, eg, during insulin-glucose-potassium infusions.
Keywords: Insulin; myocardium; inotropic response; signaltransduction; PI-3-Kinase; calciumtransient; pyruvate; Calcium
Schlagwörter: Insulin; Myokard; Inotropie; Signaltransduction; Klaziumtransient; Kalzium; PI-3-Kinase; Pyruvat
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]