Show simple item record

Rhenium and Osmium PNP Pincer Complexes for Nitrogen Fixation and Nitride Transfer

dc.contributor.advisorSchneider, Sven Prof. Dr
dc.contributor.authorWätjen, Florian
dc.date.accessioned2019-12-19T10:00:39Z
dc.date.available2019-12-19T10:00:39Z
dc.date.issued2019-12-19
dc.identifier.urihttp://hdl.handle.net/21.11130/00-1735-0000-0005-12D8-3
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-7777
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-7777
dc.language.isoengde
dc.publisherNiedersächsische Staats- und Universitätsbibliothek Göttingende
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540de
dc.titleRhenium and Osmium PNP Pincer Complexes for Nitrogen Fixation and Nitride Transferde
dc.typedoctoralThesisde
dc.contributor.refereeSchneider, Sven Prof. Dr.
dc.date.examination2019-09-27
dc.description.abstractengActivation, splitting and fixation of dinitrogen remains one of the most challenging reactions in coordination chemistry. In this thesis, osmium and rhenium complexes based on a PNP pincer ligand are synthesized and investigated in the overall context of dinitrogen fixation. The synthesis of a rare, low-valent Os(IV) nitrido complex in a square-planar coordination environment is described. It is shown to exhibit nitride centered ambiphilic reactivity which is further elucidated by DFT computations. Moreover, the potential of the osmium PNP pincer platform towards dinitrogen fixation is investigated. In the case of rhenium, the previously reported splitting of dinitrogen into terminal nitride complexes is investigated and a key intermediate, i.e. a temperature labile N2-bridged dimer is characterized by NMR and X-ray diffraction. Furthermore, the influence of ligand modifications is investigated. Especially the change of the pincer substituents from tert-butyl to iso-propyl is shown to have a tremendous effect on the platform's reactivity. A starting Re(III) platform with an unique electronic structure is obtained, which is analyzed by means of multireference calculations. Reduction under dinitrogen atmosphere yields a temperature stable N2 bridged dimer. In a rare example of N2 photolysis, visible light irradiation results in almost quantitative conversion into terminal Re(V) nitrido complexes. Upon reaction with benzoylchloride, the nitrogen atom can be incorporated into benzonitrile and benzamide in a metal-ligand cooperative proton-coupled electron transfer step. Finally, upon electrochemical reduction in the presence of a weak acid, the N2 bridged dimer can be regenerated. Thus, a synthetic cycle for N2 fixation is achieved utilizing visible light photolysis as well as electrolysis.de
dc.contributor.coRefereeMeyer, Franc Prof. Dr.
dc.contributor.thirdRefereeMazzanti, Marinella Prof. Dr.
dc.subject.engCoordination Chemistryde
dc.subject.engDinitrogen Fixationde
dc.subject.engPhotochemistryde
dc.subject.engLow Valent Nitrido Complexesde
dc.subject.engOsmium Pincer Complexesde
dc.subject.engRhenium Pincer Complexesde
dc.subject.engProton Coupled Electron Transferde
dc.identifier.urnurn:nbn:de:gbv:7-21.11130/00-1735-0000-0005-12D8-3-9
dc.affiliation.instituteFakultät für Chemiede
dc.subject.gokfullChemie  (PPN62138352X)de
dc.identifier.ppn1686132425


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record