Show simple item record

Foliated Positive Scalar Curvature

dc.contributor.advisorSchick, Thomas Prof. Dr.
dc.contributor.authorDeng, Jialong
dc.date.accessioned2021-11-11T10:29:15Z
dc.date.available2021-11-18T00:50:08Z
dc.date.issued2021-11-11
dc.identifier.urihttp://hdl.handle.net/21.11130/00-1735-0000-0008-5979-D
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-8930
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc510de
dc.titleFoliated Positive Scalar Curvaturede
dc.typedoctoralThesisde
dc.contributor.refereeSchick, Thomas Prof. Dr.
dc.date.examination2021-10-07
dc.description.abstractengIn this thesis we study different questions on scalar curvatures. The first part is devoted to obstructions against existence of a (Riemannian) metric with positive scalar curvature on a closed manifold. The second part investigates the synthetic definition of scalar curvature bounded below on metric measure spaces. In the third and fourth part, we define and study weighted scalar curvature on a smooth metric measure space. We show rigidity results about scalar curvature bounded below and a sphere theorem for RCD(n-1; n) spaces in the final part.de
dc.contributor.coRefereePidstrygach, Viktor Prof. Dr.
dc.subject.engObstructions; Weighted scalar curvature; Rigidity resultsde
dc.identifier.urnurn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-5979-D-1
dc.affiliation.instituteFakultät für Mathematik und Informatikde
dc.subject.gokfullMathematics (PPN61756535X)de
dc.description.embargoed2021-11-18
dc.identifier.ppn1777295459


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record