dc.contributor.advisor | Schick, Thomas Prof. Dr. | |
dc.contributor.author | Deng, Jialong | |
dc.date.accessioned | 2021-11-11T10:29:15Z | |
dc.date.available | 2021-11-18T00:50:08Z | |
dc.date.issued | 2021-11-11 | |
dc.identifier.uri | http://hdl.handle.net/21.11130/00-1735-0000-0008-5979-D | |
dc.identifier.uri | http://dx.doi.org/10.53846/goediss-8930 | |
dc.language.iso | eng | de |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 510 | de |
dc.title | Foliated Positive Scalar Curvature | de |
dc.type | doctoralThesis | de |
dc.contributor.referee | Schick, Thomas Prof. Dr. | |
dc.date.examination | 2021-10-07 | |
dc.description.abstracteng | In this thesis we study different questions on scalar curvatures. The
first part is devoted to obstructions against existence of a (Riemannian)
metric with positive scalar curvature on a closed manifold. The second part
investigates the synthetic definition of scalar curvature bounded below on
metric measure spaces. In the third and fourth part, we define and study
weighted scalar curvature on a smooth metric measure space. We show
rigidity results about scalar curvature bounded below and a sphere theorem
for RCD(n-1; n) spaces in the final part. | de |
dc.contributor.coReferee | Pidstrygach, Viktor Prof. Dr. | |
dc.subject.eng | Obstructions; Weighted scalar curvature; Rigidity results | de |
dc.identifier.urn | urn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-5979-D-1 | |
dc.affiliation.institute | Fakultät für Mathematik und Informatik | de |
dc.subject.gokfull | Mathematics (PPN61756535X) | de |
dc.description.embargoed | 2021-11-18 | |
dc.identifier.ppn | 1777295459 | |