Navigation ▼

Zur Kurzanzeige

dc.contributor.advisor Wardetzky, Max Prof. Dr.
dc.contributor.author Schumacher, Henrik
dc.date.accessioned 2015-11-05T09:59:45Z
dc.date.available 2015-11-05T09:59:45Z
dc.date.issued 2015-11-05
dc.identifier.uri http://hdl.handle.net/11858/00-1735-0000-0023-9679-6
dc.language.iso eng de
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc 510 de
dc.title Variational Convergence and Discrete Minimal Surfaces de
dc.type doctoralThesis de
dc.contributor.referee Wardetzky, Max Prof. Dr.
dc.date.examination 2014-12-09
dc.description.abstracteng This work is concerned with the convergence behavior of the solutions to parametric variational problems. An emphasis is put on sequences of variational problems that arise as discretizations of either infinite-dimensional optimization problems or infinite-dimensional operator problems. Finally, the results are applied to discretizations of the Douglas-Plateau problem and of a boundary value problem in nonlinear elasticity. de
dc.contributor.coReferee Luke, Russell Prof. Dr.
dc.contributor.thirdReferee Adly, Samir Prof. Dr.
dc.subject.eng Hencky elasticity de
dc.subject.eng Ritz-Galerkin method de
dc.subject.eng finite element method de
dc.subject.eng minimal surfaces de
dc.subject.eng Douglas-Plateau problem de
dc.identifier.urn urn:nbn:de:gbv:7-11858/00-1735-0000-0023-9679-6-0
dc.affiliation.institute Fakultät für Mathematik und Informatik de
dc.subject.gokfull Mathematics (PPN61756535X) de
dc.identifier.ppn 838521738

Dateien

Das Dokument erscheint in:

Zur Kurzanzeige