• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Azumaya-Algebren und Oktavenalgebren auf algebraischen Varietäten

Azumaya algebras and octonion algebras on algebraic varieties

by Kristin Stroth
Doctoral thesis
Date of Examination:2013-10-23
Date of issue:2013-11-21
Advisor:Prof. Dr. Ulrich Stuhler
Referee:Prof. Dr. Ulrich Stuhler
Referee:Prof. Dr. Thomas Schick
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-4155

 

 

Files in this item

Name:diss_kristin_stroth.pdf
Size:1.03Mb
Format:PDF
Description:Dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

We study noncommutative algebras over rings and on algebraic varieties. In the first part we give a criterion for whether or how far a central simple algebra over the function field of a projective variety could be extended as a sheaf of Azumaya algebras onto that variety. Furthermore, we examine the local structure of Azumaya algebras or more generally of maximal orders on surfaces given by the cyclic covering trick. The latter is a method introduced by Chan to construct maximal orders on surfaces, which furthermore have ramification exactly over a given curve. In the second part we study the not associative octonion algebras or more generally composition algebras over rings. We transfer well-known facts from the case of composition algebras over fields to the situation over rings. We examine octonion algebras and maximal orders over discrete valuation rings and prove a generalisation of a result of van der Blij and Springer about the local nature of maximal orders in the case of the rational numbers and of algebraic number fields to all noetherian integrally closed domains. Finally, we introduce a notion of sheaves of octonion algebras and of sheaves of maximal orders in octonion algebras on algebraic varieties.
Keywords: noncommutative algebra, algebraic surfaces, Azumaya algebra, maximal order, nonassociative algebra, octonion algebra, sheaf of algebras

Other Languages

Wir behandeln nichtkommutative Algebren über Ringen und auf algebraischen Varietäten. Im ersten Teil beschreiben wir ein Kriterium, das angibt, ob und wie weit sich eine gegebene Azumaya-Algebra über dem Funktionenkörper einer algebraischen Varietät als Garbe von Azumaya-Algebren auf die Varietät ausdehnen lässt. Außerdem untersuchen wir die lokale Struktur von Azumaya-Algebren oder allgemeiner von Maximalordnungen, die mit Hilfe des Cyclic-Covering-Tricks von Chan konstruiert werden. Mit dieser Methode lassen sich Maximalordnungen auf algebraischen Flächen konstruieren, die zudem genau über einer gewählten Kurve verzweigen. Im zweiten Teil betrachten wir die nichtassoziativen Oktavenalgebren und allgemeiner auch Kompositionsalgebren über Ringen. Dabei übertragen wir die bekannten Aussagen von Kompositionsalgebren über Körpern auf die Situation von Algebren über Ringen. Wir untersuchen Oktavenalgebren und Maximalordnungen über diskreten Bewertungsringen und verallgemeinern ein Resultat von van der Blij und Springer über die lokale Natur von Maximalordnungen über den rationalen Zahlen und über algebraischen Zahlkörpern auf den Fall von beliebigen noetherschen, ganzabgeschlossenen Integritätsbereichen. Abschließend führen wir eine Definition von Garben von Oktavenalgebren und Garben von Maximalordnungen in Oktavenalgebren über algebraischen Varietäten ein.
Schlagwörter: Nichtkommutative Algebra, algebraische Flächen, Azumaya-Algebra, Maximalordnung, nichtassoziative Algebra, Oktave <Mathematik>, Algebrengarbe
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]