Zur Kurzanzeige

Postglazialer Anstieg des Meeresspiegels, Paläoklima und Hydrographie, aufgezeichnet in Sedimenten der Bermuda inshore waters

dc.contributor.advisorMeischner, Dieter Prof. Dr.de
dc.contributor.authorVollbrecht, Rüdiger Dr.de
dc.date.accessioned2000-10-26T15:25:54Zde
dc.date.accessioned2013-01-18T11:26:25Zde
dc.date.available2013-01-30T23:50:14Zde
dc.date.issued2000-10-26de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0006-B35B-4de
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-2371
dc.format.mimetypeContentType:application/pdf Size:38.197de
dc.language.isogerde
dc.rights.urihttp://webdoc.sub.gwdg.de/diss/copyrdiss.htmde
dc.titlePostglazialer Anstieg des Meeresspiegels, Paläoklima und Hydrographie, aufgezeichnet in Sedimenten der Bermuda inshore watersde
dc.typehabilitationde
dc.title.translatedPostglacial rise of sea level, palaeoclimate and hydrography, recorded in sediments of the Bermuda inshore watersde
dc.contributor.refereeHoefs, Jochen Prof. Dr.de
dc.date.examination1997-01-13de
dc.subject.dnb550 Geowissenschaftende
dc.description.abstractengThe principal aim of this study was to clarify the sedimentary history of the Bermuda inshore waters during postglacial time. From this, clues to the deglacial history of regional sea-level and palaeoclimate were expected.Fourty-six kilometres of UNIBOOM seismic profiles and 53 sediment cores were studied from various locations in the major inshore waters: Castle Harbour, Great Sound, Harrington Sound, Port Royal Bay, St. George's Harbour. Of these, Harrington Sound was studied most intensely.Aside from core description techniques, the following methods were employed: X-ray radiography, warve counting, optical and scanning electron microscopy, coarse fraction analysis, micropalaeontological techniques, X-ray diffraction, geochemical techniques (bulk carbonate, CHN-analyses, GC-MS, stable oxygen and carbon isotopes), and radiocarbon dating (conventional, AMS).The Holocene sedimentary succession in Harrington Sound comprises 15 limnic, brackish, and marine facies. Above the Pleistocene soil or carbonates, a basal Holocene peat is usually developed. This basal peat accumulated in freshwater marshes very close to the ambient sea-level. Radiocarbon age-depth data on peat from various elevations give a measure of deglacial sea-level rise during the last 10,400 14C-years BP (~12,500 sidereal years BP). Comparison with another glacioeustatic sea-level curve, i.e. that of Barbados, reveals significant differences the reasons of which are still under discussion. Previously unrecognized sources of error include: (1) tectonic-isostatic movements during global deglaciation (possible for both settings, but more probable for Barbados), and (2) downslope transport of Acropora palmata debris (Barbados).During the last 10,400 14C-years BP, sea level rose from below -35 m to present datum. In response to this, the formerly subaerial inshore basins became flooded, at first by fresh water lenses buoyant at sea level. In the deep depressions of Harrington Sound, the Holocene limnic succession starts with peat and intervening lacustrine chalk. This reflects a freshwater marsh, with small ponds, established in response to the rising sea level. Deposition of lake marl commenced throughout much of the Harrington Sound lake when the continuously rising lake level flooded former marsh floors. Continued rise of sea level led to encroachment of marine pore water through the karstified bottom of Harrington Sound, establishing meromictic conditions in the deeps and brackish conditions in the shallows by about 8.000 yr BP. Limnic mollusc and ostracod species became quickly replaced by euryhaline ones. About 1,5 kyr later, holomixis resumed throughout the basin, and restricted marine conditions were established.The last major environmental change took place a few hundreds of years ago when, possibly in historic time already, Harrington Sound acquired a surficial connection to the adjacent lagoon. In response to the improved water exchange, a different suite of marine fauna including the branching coral Oculina entered the basin and started to re-shape the inshore-water bottom. On principle, each of the inshore basins ran through the same history of emersion, flooding, ingression of sea-water, and deepening. Modifications to the general scheme resulted from differences in: (1) the degree of isolation from the surrounding ocean, (2) antecedent topography, (3) hydrography, (4) erosion, (5) autotrophic communities, and (6) reef communities.de
dc.contributor.coRefereeMeischner, Dieter Prof. Dr.de
dc.contributor.thirdRefereeRiegel, Walter Prof. Dr.de
dc.subject.topicMathematics and Computer Sciencede
dc.subject.gerPostglazialde
dc.subject.gerMeeresspiegelde
dc.subject.gerPaläoklimade
dc.subject.gerHydrographyde
dc.subject.gerBermudade
dc.subject.gerSedimentede
dc.subject.gerPleistozände
dc.subject.gerHolozände
dc.subject.gerQuartärde
dc.subject.gerSeende
dc.subject.gerKüstede
dc.subject.gerLaminitede
dc.subject.gerSolarzyklende
dc.subject.gerSonnenzyklende
dc.subject.germarinde
dc.subject.gerlakustrinde
dc.subject.gerGeologiede
dc.subject.gerKarbonatede
dc.subject.gerBödende
dc.subject.gerKarstde
dc.subject.gerTorfde
dc.subject.gerIsotopen-Geochemiede
dc.subject.gerAltersbestimmungde
dc.subject.gerFaziesde
dc.subject.gerPaläökologiede
dc.subject.engpostglacialde
dc.subject.engsea levelde
dc.subject.engpalaeoclimatede
dc.subject.engpaleoclimatede
dc.subject.enghydrographyde
dc.subject.engBermudade
dc.subject.engsedimentsde
dc.subject.engPleistocenede
dc.subject.engHolocenede
dc.subject.engQuaternaryde
dc.subject.enginshore watersde
dc.subject.englakesde
dc.subject.englaminitesde
dc.subject.engsolar cyclesde
dc.subject.englacustrinede
dc.subject.engmarinede
dc.subject.enggeologyde
dc.subject.engcarbonatesde
dc.subject.engsoilde
dc.subject.engkarstde
dc.subject.engpeatde
dc.subject.engisotope geochemistryde
dc.subject.engradiocarbon datingde
dc.subject.engfaciesde
dc.subject.engpalaeoecologyde
dc.subject.engpaleoecologyde
dc.subject.bk38.48 Marine Geologiede
dc.subject.bk38.41 Sedimentationde
dc.subject.bk38.82 Klimatologiede
dc.subject.bk38.19 Historische Geologie: Sonstigesde
dc.subject.bk38.32 Geochemiede
dc.subject.bk38.88 Regionale Hydrologiede
dc.subject.bk38.47 Moorede
dc.subject.bk38.90 Ozeanologiede
dc.subject.bkOzeanographiede
dc.identifier.urnurn:nbn:de:gbv:7-webdoc-950-7de
dc.identifier.purlwebdoc-950de
dc.affiliation.instituteFakultät für Geowissenschaften und Geographiede
dc.subject.gokfullVAT 110 Küstendynamik und Küstenmorphologie einzelner Regionende
dc.subject.gokfullVAT 250 Litorale Sedimentede
dc.subject.gokfullVCA 520 Quartärgeologiede
dc.subject.gokfullVDI 210 Pleistozände
dc.subject.gokfullVDI 220 Holozände
dc.subject.gokfullVEW 200 Karibischer Raumde
dc.subject.gokfullVEZ 130 Inselgruppende
dc.subject.gokfullTWC 600 Paläoklimatologiede
dc.subject.gokfullTWC 500 Klimaschwankungen und Klimaänderungen im Quartärde
dc.subject.gokfullVKB 380 Sedimente bestimmter Regionende
dc.subject.gokfullVKB 378 Rhytmitede
dc.subject.gokfullVKB 376 Organogene Sedimentgesteinede
dc.subject.gokfullVKB 340 Fazieskundede
dc.subject.gokfullVKB 333 Sonstige Sedimentationsprozessede
dc.subject.gokfullVKB 332 Sedimentationsbedingungende
dc.subject.gokfullUHA 700 Marine Geologie (Küstende
dc.subject.gokfullWattde
dc.subject.gokfullInselbildung etc.)de
dc.subject.gokfullUHA 440 Schwankungende
dc.identifier.ppn487198247de


Dateien

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige