dc.contributor.advisor | Denker, Manfred Prof. Dr. | de |
dc.contributor.author | Kan-Dobrowsky, Natalia | de |
dc.date.accessioned | 2006-01-20T15:27:48Z | de |
dc.date.accessioned | 2013-01-18T13:22:22Z | de |
dc.date.available | 2013-01-30T23:50:55Z | de |
dc.date.issued | 2006-01-20 | de |
dc.identifier.uri | http://hdl.handle.net/11858/00-1735-0000-0006-B401-6 | de |
dc.identifier.uri | http://dx.doi.org/10.53846/goediss-2516 | |
dc.description.abstract | Wir bauen das verallgemeinerte diskrete Modell des zu Grunde liegenden Aktienpreisprozesses, der als eine bessere Annäherung an den Aktienpreisprozess dient als der klassische zufällige Spaziergang. Das verallgemeinerte Multinomial-Modell des Option-Preises in Bezug auf das neue Modell des Aktienpreisprozesses wird erhalten. Das entsprechende asymptotische Verfahren erlaubt, die verallgemeinerte Black-Scholes Formel zu erhalten, die die Formel als einen Begrenzungsfall des verallgemeinerten diskreten Option-Preis Modells bewertet. | de |
dc.format.mimetype | application/pdf | de |
dc.language.iso | eng | de |
dc.rights.uri | http://webdoc.sub.gwdg.de/diss/copyr_diss.html | de |
dc.title | Generalized Multinomial CRR Option Pricing Model and its Black-Scholes type limit | de |
dc.type | doctoralThesis | de |
dc.title.translated | Verallgemeinertes Multinomial CRR Option Preis Modell und seine Black-Scholes Typ Begrenzung | de |
dc.contributor.referee | Woerner, Jeannette Prof. Dr. | de |
dc.date.examination | 2005-09-11 | de |
dc.subject.dnb | 510 Mathematik | de |
dc.description.abstracteng | We construct the generalized discrete-time model of the underlying stock price process which serves as a better approximation to the stock price process than classical random walk. The generalized multinomial model of option price with respect to the new model of stock price process is obtained. The corresponding asymptotic procedure allows to obtain the generalized Black-Scholes option pricing formula as a limiting case of generalized discrete-time option pricing model. | de |
dc.subject.topic | Mathematics and Computer Science | de |
dc.subject.ger | Option-Preis | de |
dc.subject.ger | verallgemeinerte Black-Scholes Formel | de |
dc.subject.eng | option pricing | de |
dc.subject.eng | generalized Black-Scholes formula | de |
dc.subject.bk | 31.70 | de |
dc.subject.bk | 31.73 | de |
dc.identifier.urn | urn:nbn:de:gbv:7-webdoc-635-2 | de |
dc.identifier.purl | webdoc-635 | de |
dc.affiliation.institute | Fakultät für Mathematik und Informatik | de |
dc.subject.gokfull | EGCP 050: Applications to actuarial sciences and financial mathematics {Statistics: Applications} | de |
dc.subject.gokfull | EHGM 350: Stochastic analysis {Fluid mechanics: Basic methods in fluid mechanics} | de |
dc.subject.gokfull | EGA 990: Probability theory and stochastic processes - not classified at a more specific level | de |
dc.subject.gokfull | EEHN 300: Applications in probability theory and statistics {Miscellaneous applications of operator theory} | de |
dc.subject.gokfull | EGC 990: Statistics - not classified at a more specific level | de |
dc.identifier.ppn | 587183748 | de |
dc.creator.birthname | Kan | |