• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Item View
  •   Home
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Role For Microtubule Dynamics For The Induction Of Chromosomal Instability And Cell Migration And Invasion In Human Cancer Cells

by Katharina Berger
Doctoral thesis
Date of Examination:2016-11-18
Date of issue:2017-06-21
Advisor:Prof. Dr. Holger Bastians
Referee:Prof. Dr. Holger Bastians
Referee:Prof. Dr. Michael Thumm
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-6362

 

 

Files in this item

Name:Dissertation_Katharina_Berger.pdf
Size:6.89Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

Aneuploidy and increased cell migration and invasion are hallmarks of aggressive human cancers. Aneuploidy derives from an increased rate of perpetual chromosome missegregation during mitosis, referred to as chromosomal instability (CIN). CIN contributes to the development of genetic heterogeneity and is thought to support rapid adaptation of cancer cells. Significantly, late tumor stages, which exhibit metastasis, are not only characterized by increased cancer cell migration and invasion, but also by high levels of CIN, both of which correlate with poor patient prognosis. Therefore, I aimed to investigate a potential link between CIN and increased cell migration and invasion in aggressive human cancer cells. In this study, I found that CIN per se is not sufficient to trigger increased cancer cell migration and invasion. However, a hyperactive TRIO-Rac1-Arp2/3 pathway acts as a shared trigger for both, the development of CIN and cancer cell migration and invasion. Hyperactivation of TRIO, Rac1 and the Arp2/3 complex depends on increased microtubule plus-end assembly rates and on the localization of the Rac1-GEF TRIO to microtubule plus-ends via the microtubule end-binding protein EB1. In mitosis, microtubule dependent hyperactivation of the pathway causes spindle positioning defects leading to erroneous microtubule-kinetochore attachments and the generation of lagging chromosomes, which constitute a common cause for chromosome missegregation and CIN. Inhibition of TRIO, Rac1 or the Arp2/3 complex suppressed these phenotypes and prevented the development of aneuploidy in chromosomally instable colon cancer cells. In interphase, the hyperactivity of TRIO, Rac1 and the Arp2/3 complex resulted in highly enhanced cancer cell migration and invasion. Analogous to the situation in mitosis, restoration of proper microtubule dynamics in interphase suppressed the migratory and invasive phenotype in invasive colorectal cancer and melanoma cells. Thus, these results demonstrate a mechanistic link between the regulation of the actin and the microtubule cytoskeleton important for the development of CIN as well as for triggering cancer cell migration and invasion. As one important trigger that can cause increase of microtubule plus-end assembly rates in both, mitosis and in interphase I identified a concomitant loss of the transcription factors p53 and p73. In fact, my studies suggest that p53 and p73 cooperate in maintaining chromosomal stability and suppressing cancer cell migration and invasion.
Keywords: Migration; Invasion; Cancer; Microtubule Dynamics
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]