• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Variational Regularization Strategy for Atmospheric Tomography

by Erdem Altuntac
Doctoral thesis
Date of Examination:2016-04-04
Date of issue:2016-07-22
Advisor:Prof. Dr. Russell Luke
Referee:Prof. Dr. Russell Luke
Referee:Prof. Dr. Thorsten Hohage
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-5760

 

 

Files in this item

Name:thesis_opt_ALTUNTAC032016.pdf
Size:4.02Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

The main focus of this dissertation is to establish the necessary theory with numerical illustrations for solving an atmospheric tomography problem. The inverse problem is the reconstruction of some volume data from sparsely and non-uniformly distributed tomographic measurement. For a given linear, compact and injective forward operator $\mathcal{T}$ defined between some reflexive Banach space $\mathcal{V}$ and Hilbert space $\mathcal{H},$ $\mathcal{T} : \mathcal{V} \rightarrow \mathcal{H},$ we seek the regularized minimizer for the general Tikhonov type objective functional \begin{eqnarray} F_{\alpha}:&\mathcal{V} \times \mathcal{H}& \longmapsto \mathbb{R}_{+} \nonumber\\ &(\varphi , f^{\delta})& \longmapsto F_{\alpha}(\varphi , f^{\delta}) := \frac{1}{2} \Vert{\mathcal{T}\varphi - f^{\delta}}\Vert_{\mathcal{H}}^2 + \alpha J(\varphi) , \nonumber \end{eqnarray} where the smooth and convex penalizer is $J : \mathcal{V} \rightarrow \mathbb{R}_{+}.$ We analyse the stable convergence of the expected regularized solution to the true solution by a posteriori strategy for the choice of the regularization parameter, $\alpha = \alpha(\delta , f^{\delta}).$ Of particular interest in terms of the penalty term $J,$ we choose a smoothed total variation functional \begin{eqnarray} J_{\beta}^{TV}(\varphi) := \int_{\Omega} \sqrt{\vert\nabla\varphi(x)\vert_2^2 + \beta} d x , \nonumber \end{eqnarray} where $0 < \beta < 1$ and $\vert \cdot \vert_2$ is the usual Euclidean norm. A new lower bound for the Bregman distance particularly associated with the penalty term $J_{\beta}^{TV}$ is estimated. We further investigate the impact of TV regularization on inverse ill-posed problems and convey the phenomenon of loss of contrast in TV regularization. We demonstrate our regularization on simulated data, employing a novel reverse-communication large-scale nonlinear optimization software and also compare the result against traditional algorithms.
Keywords: atmospheric tomography, variational regularization, total variation, loss of contrast
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]