Tolerant chimpanzee - quantifying costs and benefits of sociality in wild female bonobos (Pan paniscus)
von Niina Orvokki Nurmi
Datum der mündl. Prüfung:2018-11-09
Erschienen:2019-01-30
Betreuer:Dr. Oliver Schülke
Gutachter:Dr. Oliver Schülke
Gutachter:Prof. Dr. Hannes Rakoczy
Dateien
Name:PhD_Thesis_Niina_O_Nurmi.pdf
Size:2.38Mb
Format:PDF
Zusammenfassung
Englisch
Social interactions with conspecifics have fitness consequences for individuals. Socio-ecology is a subdiscipline of behavioral ecology. Socio-ecology integrates ecology, sexual selection, inclusive fitness theory, and evolutionary optimality modelling to advance our understanding of how social strategies evolve. Social strategies are sets of repeated individual behavioural decisions from which social systems eventually arise. A successful strategy maximizes an individuals’ inclusive fitness. Behavioural decisions are constrained by several factors, many of which stem from the surrounding ecological and social environment. Group living comes with the costs of within-group competition for resources and increased disease transmission risk, which needs to balance out against the benefits of sociality for group living to evolve. Benefits of group living include reduced risk of predation, increased access to mates, defense of resources, and enhanced foraging success, among others. Social strategies are modulated by sex, because male and female fitness are limited by different resources. In mammals, female fitness is limited by access to food resources due to the energetic costs of gestation and lactation. Therefore, feeding competition tends to pose a greater cost of sociality for females than for males. Primate socio-ecology has focused on how food resource characteristics affect the distribution of females and their social strategies, which in turn defines the social strategies of males. Male coercion, infanticide risk, and predation risk are also key factors which shape female strategies. Classical literature on resource competition makes a distinction between two main forms of competition, contest and scramble. Contest competition is a direct form of competition induced by clumped, defendable resources, and it results in a skewed distribution of resources among group members. Scramble is an indirect form of competition that results in equal resource distribution among group members but the amount received by everyone decreases with increasing group size. Primate socio-ecological models have been central in providing distinct predictions for the behavioural responses and net energy intake depending on the resource characteristics. The social outcomes describe the competitive regimes within and betw een groups, including characteristics of dominance relationships and degree of tolerance among females. The two species in genus Pan, chimpanzees (P. troglodytes) and bonobos (P. paniscus), share several social traits, including female dispersal and a high degree of fission-fusion dynamics. However, female bonobos are distinct due to their high gregariousness (i.e. high ratio of attendance in mix-sex parties and female cohesiveness), increased social tolerance and socio-sexual behaviours. The proximate mechanisms underlying these traits have not been studied rigorously thus far. Several hypotheses have been proposed to explain the species difference within the Genus Pan, however a formal test with the appropriate parameters has been lacking. As our closest living relatives together with the chimpanzees, studying bonobos in their natural habitat can also enhance our understanding of human evolution. My thesis aim was test predictions derived from socio-ecological theory, which link repeated social interactions in feeding patches to variation in female energy balance and glucocorticoid levels reflecting allostatic load (i.e. the cumulative burden on the body due to environmental challenges) in female bonobos. In particular, my aim was to elucidate, whether the variation is consistently associated with female dominance rank position such that the costs of feeding competition are skewed. With my study, I was also able to comprehensively test a socio-ecological hypothesis, the Resource Abundance hypothesis, which proposes that differences in gregariousness between female chimpanzees and bonobos are due to the differences in the availability of abundant food resources. In addition, I tested two alternative hypotheses, the Cooperative Defence and Priority of Access hypotheses, proposed to explain the increased gregariousness in female bonobos specifically. The former proposes female defence of food resources against males as the main driver of female sociality in bonobos, while the latter invokes female defence of food resources against other females, respectively. To test the predictions for these hypotheses, I characterized the proximate mechanisms of within-group feeding competition in female bonobos by assessing the relative effects of social and ecological parameters on female feeding efficiency, energy balance and allostatic load. I collected data on 14 adult female bonobos of the Bompusa community at the study site of LuiKotale in Democratic Republic of Congo during two nine-month field seasons. I obtained data on food resource characteristics on a scale relevant to the bonobos from 683 feeding patches using the focal tree method. I recorded food intake rates and movement in focal trees to assess female feeding efficiency. I collected non-invasive urine samples to assess female energy balance based on C-peptide levels and allostatic load based on cortisol metabolite levels. I collected scan data on party composition and terrestrial herbaceous vegetation feeding, and used it to infer potential alternative female feeding strategies. To examine whether females predominantly formed coalitions against other females or against males, I analysed all occurrence data on agonistic interactions. My first study evaluated the relative contributions of ecological and social factors on female feeding success, feeding effort and energy balance. Based on the combined effects of decreasing food intake and increasing movement in feeding patches, I established that bonobos depleted their food resources, which is a condition for feeding competition to occur. I found that high-ranking females had higher feeding efficiency than low-ranking females, because high dominance rank was associated with higher food intake rates in combination with lower probability of moving in feeding patches. This finding is consistent with within-group contest competition and most likely results from high-ranking females attaining better feeding positions in food patches and avoidance of high-ranking females by low-ranking females. I found that variation in female energy balance was explained by monthly availability of fruits (positive association between energy balance and fruit availability), but not by female dominance rank. I demonstrated that low-ranking females did not compensate for the lower feeding efficiency by feeding in terrestrial herbaceous vegetation patches or by foraging in smaller parties than high-ranked females. I also found that female-female coalitions mainly targeted males. In combination with the patch depletion and lack of support for lower-ranking females using alternative feeding strategies, I have shown that the Resource Abundance hypothesis is an unlikely explanation for the differences in female gregariousness between chimpanzees and bonobos. My study lends stronger support for the Cooperative Defence hypothesis, suggesting that female gregariousness and tolerance in bonobos evolved due to the need of flexible coalition formation among the mostly unrelated females in defense of food resources against males and to deter harassment by males. In my second study, I tested the predictions of the allostatic load framework to asses the effects of energetic condition, dominance status, and reproductive state on female cortisol metabolite levels as a proxy of allostatic load. I established, that there was no relationship between energy balance and cortisol levels measured from the same urine sample. I found that females in early lactation state had higher cortisol levels compared to females in cycling or late lactation state. I also found that the three highest-ranked females had higher cortisol levels compared to the 11 females on all other dominance rank positions. I also showed that females at the highest dominance rank position face increased allostatic load. Moreover, I found that early lactation increases allostatic load of females independent of dominance rank position. The combined results of my study refine our understanding of female social relationships in a species that is peaceful and tolerant according to the widely held notion. Lower-ranking female bonobos suffer only limited costs of within-group feeding competition. Despite having lower feeding efficiency compared to high-ranking females, the energy balance of low-ranking females is similar to those of higher-ranked females. I did not find indication that low-ranked females used compensatory feeding strategies of feeding away from the main party or feeding more on terrestrial herbs. Another possibility is that lower-ranking females feed longer, which I did not test for. However, I did find that highest-ranking females face costs of sociality that seem to be driven by social effects rather than by nutritional challenges. The increased costs of sociality to the highest-ranked female bonobos may be due to dominance rank maintenance and acquisition in the absence of support from female relatives on the one hand. Moreover, there may be additional energetic costs for those high-ranking females who provide agonistic support for their son(s). My study therefore consolidates the modulating effect of male strategies on female social relationships, and the importance of considering the synergistic effects of male and female strategies on sociality.
Keywords: feeding competition, social foraging, C-peptide, energy balance, bonobo, Pan paniscus, glucocorticoids, allostasis