• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Item View
  •   Home
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-Directional Phase-Contrast Flow MRI in Real Time

by Jost M. Kollmeier
Doctoral thesis
Date of Examination:2020-08-31
Date of issue:2021-01-28
Advisor:Prof. Dr. Jens Frahm
Referee:Prof. Dr. Jens Frahm
Referee:Prof. Dr. Jörg Enderlein
Referee:Prof. Dr. Klaus Scheffler
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-8413

 

 

Files in this item

Name:2020_KollmeierJ_diss.pdf
Size:20.0Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

This work describes the development of a phase-contrast MRI technique that achieves multi-directional velocity quantification in real time, i.e. at high spatio-temporal resolution and without any physiological gating or data sorting. The technique exploits highly undersampled radial acquisitions with time-efficient flow encoding, a correction strategy for concomitant fields applicable to radial imaging, and an iterative solution for the non-linear image reconstruction problem. MRI is a potent and versatile imaging technique that allows to measure flow velocities, e.g. of blood flow. Unfortunately, MRI is intrinsically slow. Recent advances in real-time MRI based on radial FLASH and non-linear inversion offer high spatio-temporal resolutions and the realization of cross-sectional MRI movies. This real-time approach had been combined with uni-directional phase-contrast flow MRI that quantifies velocities only perpendicular to the imaging plane. In this work, the imaging technique is extended to more velocity dimensions. Opening with a brief overview on the basic principles of phase-contrast and real-time MRI (Chapter 2), this thesis presents the uni-directional flow technique in Chapter 3 followed by proposals for further improvements. Chapter 4 describes the development of a multi-directional extension and its optimization towards high spatio-temporal resolutions, while Chapter 5 proposes further methodological refinements. Chapter 6 addresses the technical accuracy and presents a correction strategy to eliminate background phase errors by concomitant magnetic fields applicable to radial imaging. Preliminary in vivo results demonstrated in Chapter 7 include cardiac flow imaging with velocity quantification in all three directions at less than 2 x 2 mm² pixel-size and more than 60 frames per second. The novel MRI technique developed in this thesis increases the potential of MRI based cross-sectional velocimetry.
Keywords: real-time MRI; phase-contrast MRI; radial MRI; model-based reconstruction; radial Maxwell correction; multi-directional flow; 4D flow; velocimetry; Karman vortex shedding; blood flow; CSF flow; 3D flow
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]