• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Physik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Physik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulations of Bosonic Dark Matter

by Jiajun Chen
Doctoral thesis
Date of Examination:2021-04-26
Date of issue:2021-11-05
Advisor:Prof. Dr. Jens Niemeyer
Referee:Prof. Dr. Jens Niemeyer
Referee:Prof. Dr. David Marsh
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-8928

 

 

Files in this item

Name:PHD_thesis (2).pdf
Size:23.4Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

Dark matter is a hypothetical form of matter, which is thought to make up nearly $27\%$ of the contents in our Universe. An increasingly popular idea is that the dark matter could be composed of light (pseudo-)scalar particles with large occupation number so that they can be described by a classical scalar field $\phi$, with the mass $\approx 10^{-22}$eV. As the finite energy ground state solutions for such a field, boson stars are a good subject in the study of dark matter. In this dissertation, the primary focus is on boson stars and their surrounding miniclusters. Firstly, using my new algorithms employing the Pseudo-Spectral method, I simulate the collision of two boson stars, and find the interference pattern when two boson stars overlap. The relationship between boson stars and the surrounding miniclusters are also introduced. Secondly, I study the formation and growth of boson stars in their surrounding miniclusters by gravitational condensation using the numerical method developed. Fully dynamical attractive and repulsive self-interactions are considered for the first time. In the case of pure gravity, I numerically prove that the growth of boson stars inside halos slows down and saturates as has been previously conjectured, and detail its conditions. Self-interactions are included using the Gross-Pitaevskii-Poisson equations. We find that in the case of strong attractive self-interactions the boson stars can become unstable and collapse, in agreement with previous stationary computations. At even stronger coupling, the condensate fragments. Repulsive self-interactions, as expected, promote boson star formation, and lead to solutions with larger radii. Lastly, I simulate the formation of vortices during the merger of boson stars with gravity and find that weak attractive self-interaction can be ignored in this process.
Keywords: Dark matter; Boson star; Pseudo-Spectral Method
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]