• Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
Dokumentanzeige 
  •   Startseite
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Dokumentanzeige
  •   Startseite
  • Zentren & Graduiertenschulen
  • GGNB - Göttinger Graduiertenzentrum für Neurowissenschaften, Biophysik und molekulare Biowissenschaften
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intramural Visualization of Scroll Waves in the Heart

von Jan Christoph
Dissertation
Datum der mündl. Prüfung:2014-10-13
Erschienen:2015-10-09
Betreuer:Prof. Dr. Stefan Luther
Gutachter:Prof. Dr. Stefan Luther
Gutachter:Prof. Dr. Eberhard Bodenschatz
crossref-logoZum Verlinken/Zitieren: http://dx.doi.org/10.53846/goediss-5306

 

 

Dateien

Name:Dissertation Jan Christoph.pdf
Size:5.19Mb
Format:PDF
Description:Dissertation Jan Christoph - Intramural Visualization of Scroll Waves in the Heart
ViewOpen

Lizenzbestimmungen:


Zusammenfassung

Englisch

Despite extensive research, the fundamental biophysical mechanisms underlying severe heart rhythm disorders such as ventricular fibrillation remain poorly understood. Ventricular fibrillation is an acute and highly lethal medical condition, in which the heart's electrical system, which normally activates the contractions of the cardiac muscle, becomes highly disorganized and ineffective in orchestrating the orderly beating of the heart. Understanding the nature of the underlying abnormal electrical activity is thought to be key to the development of novel diagnostic and therapeutical strategies in treating cardiac arrhythmias. However, current imaging technology provides only very limited insight into the complex spatial-temporal electrical patterns underlying ventricular fibrillation within the heart muscle. In this work, a novel imaging approach is presented, which aims at imaging both electrical and elasto-mechanical activity of the cardiac muscle during cardiac tachyarrhythmias to better understand the correlation of electrical activity and resultant mechanical deformation and to explore the possibility to infer the electrical activity from the mechanical deformation. The work includes computational modeling and data analysis as well as ex vivo imaging experiments with isolated, intact hearts. Using mathematical concepts from nonlinear physics that describe universal pattern formation processes in excitable electrical systems such as the heart, the imaging experiments were guided and potential interpretations and methods for processing of data were validated. It was found that both electrical and elasto-mechanical activity of the cardiac muscle are highly correlated during ventricular tachycardia and fibrillation. For instance, rotating electrical activity, which was filmed on the surface of the fibrillating, contracting heart using fluorescence imaging, was found to induce similarly rotating rate of deformation patterns. Moreover, the rotating elasto-mechanical patterns could simultaneously be imaged within the heart wall using ultrasound. The data suggests that the rotational mechanical patterns are the finger-print of electrical spiral and scroll wave activity during cardiac fibrillation. In computer simulations, it was found that the core regions of spiral and scroll waves can similarly be described by electrical or elasto-mechanical lines of phase singularity, the electrical lines of phase singularity corresponding to electrical scroll vortex wave filaments and the mechanical lines of phase singularity corresponding to topological defect lines that arise in the dynamic elasto-mechanical deformation patterns resulting from the rapid fibrillatory activity of the cardiac muscle. Both the experimental and numerical findings suggest that a mechanical measurement can provide insight into the organizational structure of ventricular fibrillation throughout the volume of the heart muscle tissue. Next to these findings, the development of the methodological approach, including high-speed fluorescence imaging equipment and data processing techniques with which it is possible to perform imaging experiments with contracting cardiac tissue preparations, to perform simultaneous voltage, calcium and strain measurements as well as to perform imaging combined with intramural strain measurements using ultrasound, is the main result of this thesis. The findings presented in this thesis have important implications on potential future clinical applications.
Keywords: Cardiology; Nonlinear Pysics; Medicine; Ventricular Fibrillation; Imaging; Ultrasound; Pattern Formation; Biophysics; Rotors; Spiral and Scroll Waves; Elastic Excitable Media
 

Statistik

Hier veröffentlichen

Blättern

Im gesamten BestandFakultäten & ProgrammeErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTypIn dieser FakultätErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTyp

Hilfe & Info

Publizieren auf eDissPDF erstellenVertragsbedingungenHäufige Fragen

Kontakt | Impressum | Cookie-Einwilligung | Datenschutzerklärung
eDiss - SUB Göttingen (Zentralbibliothek)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
ediss_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]
Niedersächsische Staats- und Universitätsbibliothek | Georg-August Universität
Bereichsbibliothek Medizin (Nur für Promovierende der Medizinischen Fakultät)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
bbmed_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]