• Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
Dokumentanzeige 
  •   Startseite
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Dokumentanzeige
  •   Startseite
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fourier expansions of GL(3) Eisenstein series for congruence subgroups

von Deniz Balakci
Dissertation
Datum der mündl. Prüfung:2015-08-10
Erschienen:2016-04-14
Betreuer:Prof. Dr. Valentin Blomer
Gutachter:Prof. Dr. Valentin Blomer
Gutachter:Prof. Dr. Jörg Brüdern
crossref-logoZum Verlinken/Zitieren: http://dx.doi.org/10.53846/goediss-5610

 

 

Dateien

Name:dissertation.pdf
Size:1.06Mb
Format:PDF
ViewOpen

Lizenzbestimmungen:


Zusammenfassung

Englisch

In this thesis the Fourier expansions of all types of GL(3) Eisenstein series for the congruence subgroup Gamma_{0}(N) of SL(3)(Z) with N squarefree, are explicitly calculated. Further certain invariance properties of the Fourier coefficients are proved from which the functional equation can be deduced. This is explicitly carried out for the Eisenstein series twisted with a constant Maass form of prime level. In detail we treat the minimal Eisenstein series associated to the minimal parabolic subgroup, the Eisenstein series twisted by a Maass cusp form associated to the two maximal parabolic subgroups and the one twisted by a constant Maass form associated to the two maximal parabolic subgroups. These are the Eisenstein series which contribute to the spectral decomposition of the Hilbertspace of square integrable functions on the corresponding symmetric space. The Fourier expansions are calculated by first explicitly determining a set of coset representatives in Iwasawa decomposition for the summation sets in the definition of each Eisenstein series. Then the Fourier coefficients are calculated in terms of Whittaker functions. It turns out that the Fourier coefficients are a product of Whittaker functions with certain Dirichlet series, which split into a number theoretic part, the L-function of the Maass cusp form in the twisted case, divisor sums in the other cases, and into a combinatorial part. For the Eisenstein series twisted with a constant Maass form of prime level a scattering matrix is explicitly calculated and a transformation law of the Eisenstein vector is proven.
Keywords: Fourier expansions; GL(3) Eisenstein series; congruence subgroups
 

Statistik

Hier veröffentlichen

Blättern

Im gesamten BestandFakultäten & ProgrammeErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTypIn dieser FakultätErscheinungsdatumAutorBetreuer & GutachterBetreuerGutachterTitelTyp

Hilfe & Info

Publizieren auf eDissPDF erstellenVertragsbedingungenHäufige Fragen

Kontakt | Impressum | Cookie-Einwilligung | Datenschutzerklärung
eDiss - SUB Göttingen (Zentralbibliothek)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
ediss_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]
Niedersächsische Staats- und Universitätsbibliothek | Georg-August Universität
Bereichsbibliothek Medizin (Nur für Promovierende der Medizinischen Fakultät)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (allg. Fragen)
Tel.: +49 (0)551 39-28655 (Fragen zu open access/Parallelpublikationen)
bbmed_AT_sub.uni-goettingen.de
[Bitte ersetzen Sie das "_AT_" durch ein "@", wenn Sie unsere E-Mail-Adressen verwenden.]